首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal relaxation behaviors of residual stresses induced by laser peening (LP) in IN718 alloy were investigated using an integrated numerical simulation and experimental approach. LP and heat treatments (HT) were carried out after which the X-ray diffraction (XRD) technique was employed in measuring the residual stresses. Micro-structures were observed using an optic microscope (OM) and transmission electron microscope (TEM). Dislocations induced by LP were also observed by TEM and characterized using the XRD technique. The effects of the applied temperature and the exposure time on residual stress and micro-structures were investigated. The results show that the extent of the residual stresses relaxation increased accordingly with the increase in the applied temperature. The relaxation rate was initially high and tended to stabilize for a longer exposure time. Grain size evolution during the process was subsequently discussed. Furthermore, a conceivable mechanism of residual stresses thermal relaxation behavior was obtained.  相似文献   

2.
Laser heating of Inconel 718 alloy is considered and the resulting temperature and stress fields are predicted using the finite element method (FEM). An experiment is carried out to treat the alloy surface by a laser beam at high pressure nitrogen environment. The metallurgical and morphological changes in the irradiated region are examined using the Scanning Electron Microscope (SEM), optical microscope, and X-ray Diffraction (XRD). It is found that the surface hardness of the alloy improves after the laser heating process, which is due to the microstructural changes and γ-phase nitride formation in the surface region. The maximum value of the residual stress predicted in the irradiated region is close to the yielding limit of the alloy.  相似文献   

3.
Microstructure of [011] oriented single crystal nickel-base superalloy consists of the cubical γ′ phase embedded coherently in the γ matrix, and arranged regularly along 〈100〉 orientations. After tensile creep, the cubical γ′ phase in the alloy is transformed into the strip-like rafted structure along [001] direction under the ordering transformation free-energy and strain energy change. And the directional growing of γ′ phase is attributed to the atoms Al and Ta into (001) plane to form the stable stacking mode.  相似文献   

4.
For evaluating the microstructure evolution and mechanical property of Ni-based Hastelloy C-276 weld joint by the pulsed laser welding, the influence of pulsed laser welding on the microstructure and mechanical property of the weld joint is investigated by the analysis of the microstructure morphology, microhardness, phase structure and tensile property. The results indicate that, in the fusion zone three sections are divided on the basis of the patterns of grain structures. In the weld joint, the element segregation is found, but the trend of brittle phase׳s formation is weakened. The weld microhardness presents just a little higher than that of base metal, and there is no obvious the softened heat affected zone. Meanwhile in the weld joint, the phase structure is still the face-center cubic with the tiny shift of peak positions and widened Full Width at Half-Maximum. The yield strength of weld joint is the same as that of base metal, and the tensile strength is nearly 90% of that of base metal. The decreased tensile strength is mainly attributed to the dislocation piling-up.  相似文献   

5.
The microstructures of a single-crystal nickel-base superalloy were observed by transmission electron microscopy (TEM) before and after thermo-mechanical fatigue. Both dislocation configurations and γ′ precipitate morphologies under in-phase (IP) testing were found to be clearly different from those under out-of-phase (OP) testing. Under IP testing, dense hexagonal dislocation networks were found on the horizontal interfaces, and irregular dislocation networks on the vertical interfaces. With decreasing mechanical strain amplitude, rafting of γ′ precipitates was more pronounced. Under OP testing, no dislocation networks were found on the γ/γ′ interfaces; also, γ′ precipitates were sheared by superlattice stacking faults, and were not clearly rafted. The characteristic dislocation networks and partials of the stacking fault are analysed and the rafting mechanism of the γ′ precipitates is discussed.  相似文献   

6.
N. El-Bagoury  Q. Mohsen 《Phase Transitions》2013,86(11-12):1108-1122
The effect of long-term thermal exposure and casting superheat on microstructure, topologically close-packed (TCP) phases, γ?′ precipitation and mechanical properties of an experimental Ni-base superalloy were studied. The investigated alloys were produced by investment casting process under two levels of superheat. After solution heat treatment, at 1180°C for 2?h followed by air cooling; the two alloys under investigation were isothermally exposed at 845°C for 24, 200, 1000, and 1500?h. The long-term thermal exposure conditions have a significant impact on the precipitation and morphology of TCP and γ?′ phases. The σ phase precipitated as needle and platelet shapes, whereas the μ phase formed in plate and agglomerated shapes. The μ phase has high concentration of Cr, Mo, W, and Co, while the σ phase has high percentages of Ni and Ti. The μ phase was precipitated after thermal exposure of 200?h in the case of high superheat specimen and after 1000?h in low superheat specimen. The η phase found was also a thick plate-like shape in the microstructure of both alloys in the interdendritic zones. The optimum size and volume fraction of γ?′ precipitates were obtained after being thermally exposed for 200 and 1000?h for high and low superheat alloys, respectively. Consequently, the highest hardness level was achieved at the optimum conditions of γ?′ precipitates in high and low superheat alloys.  相似文献   

7.
SiC fiber‐reinforced metal matrix composite is an interesting material for aerospace industry because of its excellent properties. However, these properties are greatly influenced by fiber microstructure and thermal residual stresses introduced by the preparation of the composites. Due to complicated preparation technology, microstructure and thermal stress along SiC fiber radius varies, which makes characterization difficult. Raman spectroscopy is a non‐destructive technique which provides information, at micrometer scale, on the phase composition and the crystalline state (structure and texture) of materials. Line scanning was used to assess microstructure along SiC fiber radius embedded in Ti64. The SiC coating is subdivided into three concentric parts across the fiber diameter, according to the differences in intensity and width of SiC transverse optical phonon (TO) band. Part 2 is considered to be a buffer zone connecting Part 1 and Part 3 with different deposition conditions, respectively. Amorphous Si is detected throughout fiber radius, while crystalline Si is only detected in the outer part. Thermal residual stress along fiber radius in the composite was calculated by using SiC TO band shifts with a bare fiber as reference. A cylindrical model was also used to compare with the stress data obtained from Raman shift. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
张宇  葛昌纯  沈卫平  邱成杰 《物理学报》2012,61(19):196101-196101
以氮气为雾化气体采用喷射成形工艺制备了FGH4095高温合金沉积坯, 记录了沉积过程坯体表面温度曲线, 并采用定量金相法、排水法测试了坯体致密度, 观察了坯体晶粒及γ'相的形貌. 结果表明采用氮气作为雾化介质进行喷射成型喷射沉积坯基体致密度可达99%以上, 但也存在着较大的(1—2μm)的气孔, 经热等静压和近等温锻后宏观气孔闭合, 氮以尺寸不超过1 μm的碳氮化物形式存在. 喷射沉积坯以等轴晶组织为主, 坯体内部平均晶粒尺寸约为20—40 μm, 近表面区域晶粒较细, 约为13 μm; 一次γ' 相多数呈尺寸约0.3—0.5 μm不规则块状形貌. 喷射成形坯组织结构的形成与喷射成形过程的降温过程有密切关系.  相似文献   

9.
利用连续波CO2激光器对Cu 314%Mn进行了系列表面熔凝实验,对该合金的组织形态和胞晶间距选择规律进行了研究.结果表明:随着生长速度的提高,组织形态由低速平界面向展宽胞晶、规则胞晶、展宽胞晶、类平面晶和高速绝对稳定平界面转变.在快速凝固条件下,Cu 314%Mn合金的胞晶间距存在一个选择范围,最大、最小和平均胞晶间距与生长速度的关系分别为λmax=682v-033s,λmin=289v-028s和=435v-031s,实验结果与Hunt Lu模型的预测结果相吻合.  相似文献   

10.
景艳龙  李杰  石文天  闫晓玲 《强激光与粒子束》2021,33(10):109001-1-109001-8
当前对选区激光熔化产生的残余应力预测方法主要为数值模拟,但由于设备、环境、粉末等因素差异性较大,且具有较大不确定性,很难建立符合实际情况的数值模拟模型。利用神经网络在预测多变量、复杂线性信息处理方面能力强的特点,建立适用于预测316L不锈钢粉末选区激光熔化残余应力的模型。使用选区激光熔化技术打印相当数量的不同工艺参数的试样,采用超声波检测其内部残余应力作为神经网络的训练样本,并使用这些样本对神经网络模型进行训练,获得具有预测功能的神经网络,将验证样本的工艺参数输入神经网络,计算出预测的残余应力值,与实际检测值进行对比。实验结果表明,预测值与实际测量值偏差较小,验证了所提方法的有效性。采用神经网络预测残余应力的方法,可以快速确定不同选区激光熔化工艺参数对应的残余应力,避免设置残余应力较高的工艺参数,有效缩短制备高质量工件试样的周期,降低成本。  相似文献   

11.
喷射成形粉末高温合金FGH4095M的制备及组织特征   总被引:1,自引:0,他引:1       下载免费PDF全文
王天天  葛昌纯  贾崇林  汪杰  谷天赋  吴海新 《物理学报》2015,64(10):106103-106103
喷射成形是一种近净成形的在粉末冶金气体雾化制粉技术基础上发展起来的快速凝固技术. 本文采用喷射成形技术制备成分优化后的FGH4095M合金, 研究了喷射成形FGH4095M合金沉积坯的致密度、显微组织特征, 特别是研究了喷射成形高温合金组织中特殊形貌的γ’相. 研究表明, 致密度与沉积坯部位有关, 底部致密度最高, 可达99.63%, 热等静压后的致密度可达100%. 喷射成形合金组织以均匀细小的等轴晶为主, 不存在原始颗粒边界; 一次γ’ 相尺寸约为0.6-0.8 μm, 二次γ’相尺寸约为0.1-0.5 μm, 在二次γ’相的间隙中有少量尺寸约为10-20 nm的三次γ’相. 喷射成形FGH4095M 合金中的二次 γ’相中出现特殊形貌的γ’相, 这是由单个γ’颗粒分裂形成, 与沉积过程的低冷却速度有关. 分裂过程是γ’颗粒总能量降低的过程, γ’颗粒间的弹性交互作用能起到主导作用. 对分裂γ’相的等效直径进行统计, 得到γ’ 相等效直径超过0.40 μm 后, 会出现分裂趋势. 合金具备优异的拉伸性能, 室温塑性得到显著提高, 出现γ’ 相分裂的特殊形貌组织是否对合金性能的提高产生直接影响仍需进行进一步的研究.  相似文献   

12.
针对不锈钢焊接接头存在残余应力且分布不均匀、容易发生应力腐蚀的问题,采用激光冲击强化对其进行处理,探究激光功率密度和冲击次数对表面残余应力状态的优化作用,并通过应力腐蚀试验验证优化效果。结果表明:随着功率密度增加,表面残余应力明显下降,但下降幅度逐渐减小,功率密度4.24 GW/cm2与2.83 GW/cm2冲击产生的残余应力相差不大,熔合区还存在残余拉应力,说明高功率密度不足以消除表面残余拉应力;随着冲击次数增加,残余拉应力显著降低,2.83 GW/cm2冲击3次之后,残余拉应力完全消除,局部最高应力梯度从54.7 MPa/mm下降到11.7 MPa/mm,获得了高数值、分布均匀的残余压应力层。激光冲击强化后,焊接试样的应力腐蚀断裂时间提高了33.48%,激光冲击强化产生的残余压应力是其应力腐蚀抗性提高的重要原因。  相似文献   

13.
针对不锈钢焊接接头存在残余应力且分布不均匀、容易发生应力腐蚀的问题,采用激光冲击强化对其进行处理,探究激光功率密度和冲击次数对表面残余应力状态的优化作用,并通过应力腐蚀试验验证优化效果。结果表明:随着功率密度增加,表面残余应力明显下降,但下降幅度逐渐减小,功率密度4.24GW/cm2与2.83GW/cm2冲击产生的残余应力相差不大,熔合区还存在残余拉应力,说明高功率密度不足以消除表面残余拉应力;随着冲击次数增加,残余拉应力显著降低,2.83GW/cm2冲击3次之后,残余拉应力完全消除,局部最高应力梯度从54.7 MPa/mm下降到11.7 MPa/mm,获得了高数值、分布均匀的残余压应力层。激光冲击强化后,焊接试样的应力腐蚀断裂时间提高了33.48%,激光冲击强化产生的残余压应力是其应力腐蚀抗性提高的重要原因。  相似文献   

14.
Fe + 50 wt.% WC composite coating was prepared by laser induction hybrid rapid cladding (LIHRC) on steel substrate. The phase and microstructure of the composite coating were investigated by X-ray diffraction (XRD), environmental scanning electron microscope (ESEM) and energy dispersive spectrum (EDS). The results showed that WC particles were dissolved almost completely to precipitate the coarse herringbone M6C eutectic carbides and the fine dendritic M6C carbides, and that the partially dissolved WC particles with an alloyed reaction layer were occasionally observed in the whole coating. The phases of the composite coating were composed of supersaturated solid solution α-Fe, retained austenite, Fe3C, W2C, M6C and M7C3. The microstructure evolution in the composite coating was represented by the transformation of three parts such as Fe-based metallic matrix, dispersed carbides and incompletely dissolved WC particles. The microhardness of Fe-based WC composite coating was three times much higher than that of the substrate, but was relatively lower than that of Ni-based WC composite coating by LIHRC.  相似文献   

15.
利用ABAQUS有限元软件进行了单个圆形高斯光斑的激光冲击强化数值模拟,分析材料表面光斑中心区域形成的"残余应力洞"现象,并通过分析材料的动态力学响应特征揭示了"残余应力洞"的形成机制。结果表明:在冲击波加载时,光斑边界处会产生很强的剪切应力,形成向四周传播的表面稀疏波和向材料内部传播的剪切波。当稀疏波同时传播到光斑中心,发生相遇、汇聚,使材料产生急剧的上下位移过程,造成冲击波加载塑性变形后的二次塑性变形。二次塑性变形中形成了较大的剪切塑性应变,并降低了冲击波加载阶段产生的轴向和径向塑性应变,使残余压应力降低,从而形成"残余应力洞"。  相似文献   

16.
The carck-free Fe-based +20 wt% WC coating with large area was produced by mutli-track overlapping laser induction hybrid rapid cladding. The results showed that the maximum laser scanning speed and the maximum feeding rate of powder can be increased to 3500 mm/min and 120 g/min, respectively. The cast WC particles were dissolved almost completely and had a worse wettability with Fe-based metal matrix. The precipitated carbides such as M12C and M23C6 (M=Fe, W, Cr) formed an intergranular network around the primary Fe-based phase enriched with tungsten. The microhardness of coating decreased first, and then increased slightly with an increase in the track. The first track had the highest microhardness (i.e. 870HV0.2). Moreover, the wear weight of coating approximately had a linear relationship with the sliding distance, and increased with an increase in the sliding speed. The wear rate approximately remained constant with an increase in the sliding distance and was two times lower than that of the hardened steel AISI 1045 with a hardness of 60HRC. The wear mechanism during the dry sliding wear was a combination of oxidation wear and abrasion wear.  相似文献   

17.
Picosecond laser (10.4 ps, 1064 nm) ablation of the nickel-based superalloy C263 is investigated at different pulse repetition rates (5, 10, 20, and 50 kHz). The two ablation regimes corresponding to ablation dominated by the optical penetration depth at low fluences and of the electron thermal diffusion length at high fluences are clearly identified from the change of the surface morphology of single pulse ablated craters (dimples) with fluence. The two corresponding thresholds were measured as F th(D1)1=0.68±0.02 J/cm2 and F th(D2)1=2.64±0.27 J/cm2 from data of the crater diameters D 1,2 versus peak fluence. The surface morphology of macroscopic areas processed with a scanning laser beam at different fluences is characterised by ripples at low fluences. As the fluence increases, randomly distributed areas among the ripples are formed which appear featureless due to melting and joining of the ripples while at high fluences the whole irradiated surface becomes grainy due to melting, splashing of the melt and subsequent resolidification. The throughput of ablation becomes maximal when machining at high pulse repetition rates and with a relatively low fluence, while at the same time the surface roughness is kept low.  相似文献   

18.
利用高功率Nd:YAG激光对不同工艺处理的SWOSC-V弹簧钢丝进行单点冲击处理,用X射线应力分析仪测量弹簧内外侧、侧表面的残余应力并计算出残余主应力,建立了激光冲击SWOSC-V弹簧钢丝表面残余应力的产生模型,并利用该模型分析了弹簧钢丝表面残余应力产生的原因。结果表明:弹簧钢丝在经激光冲击处理的表面强化区产生残余压应力,钢丝退火后直接激光冲击处理与经喷丸强化的钢丝激光冲击处理的表面残余应力变化不同,喷丸强化所引起的材料硬化是激光冲击处理弹簧钢丝残余应力变化不同的原因。  相似文献   

19.
利用高功率Nd:YAG激光对不同工艺处理的SWOSC-V弹簧钢丝进行单点冲击处理,用X射线应力分析仪测量弹簧内外侧、侧表面的残余应力并计算出残余主应力,建立了激光冲击SWOSC-V弹簧钢丝表面残余应力的产生模型,并利用该模型分析了弹簧钢丝表面残余应力产生的原因。结果表明:弹簧钢丝在经激光冲击处理的表面强化区产生残余压应力,钢丝退火后直接激光冲击处理与经喷丸强化的钢丝激光冲击处理的表面残余应力变化不同,喷丸强化所引起的材料硬化是激光冲击处理弹簧钢丝残余应力变化不同的原因。  相似文献   

20.
P. Changizian  H. K. Zhang 《哲学杂志》2015,95(35):3933-3949
This study focuses on investigation into the effect of helium implantation on microstructure evolution in Inconel X-750 superalloy during dual-beam (Ni+/He+) irradiation. The 1 MeV Ni+ ions with the damage rate of 10?3 dpa/s as well as 15 keV He+ ions using rate of 200 appm/dpa were simultaneously employed to irradiate specimens at 400 °C to different doses. Microstructure characterization has been conducted using high-resolution analytical transmission electron microscopy (TEM). The TEM results show that simultaneous helium injection has significant influence on irradiation-induced microstructural changes. The disordering of γ′ (Ni3 (Al, Ti)) precipitates shows noticeable delay in dose level compared to mono heavy ion irradiation, which is attributed to the effect of helium on promoting the dynamic reordering process. In contrast to previous studies on single-beam ion irradiation, in which no cavities were reported even at high doses, very small (2–5 nm) cavities were detected after irradiation to 5 dpa, which proved that helium plays crucial role in cavity formation. TEM characterization also indicates that the helium implantation affects the development of dislocation loops during irradiation. Large 1/3 〈1?1?1〉 Frank loops in the size of 10–20 nm developed during irradiation at 400 °C, whereas similar big loops detected at higher irradiation temperature (500 °C) during sole ion irradiation. This implies that the effect of helium on trapping the vacancies can help to develop the interstitial Frank loops at lower irradiation temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号