首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents a new ray theory for the propagation of sound waves in nonuniformly moving media. It is found that the ray equations in weakly inhomogeneous and slowly moving media are analogous to the equations of motion of charged particles in nonuniform electric and magnetic fields. The adiabatic approximation is used to study the problem of the propagation of sound rays in a model of near-ocean-bottom waveguide with horizontal flow and slowly varying parameters along the direction of propagation of the wave. A general formula is derived that describes the transverse displacement of the trajectory of the ray relative to the direction of propagation of the wave.  相似文献   

2.
The Fourier pseudospectral time-domain (F-PSTD) method is computationally one of the most cost-efficient methods for solving the linearized Euler equations for wave propagation through a medium with smoothly varying spatial inhomogeneities in the presence of rigid boundaries. As the method utilizes an equidistant discretization, local fine scale effects of geometry or medium inhomogeneities require a refinement of the whole grid which significantly reduces the computational efficiency. For this reason, a multi-domain F-PSTD methodology is presented with a coarse grid covering the complete domain and fine grids acting as a subgrid resolution of the coarse grid near local fine scale effects. Data transfer between coarse and fine grids takes place utilizing spectral interpolation with super-Gaussian window functions to impose spatial periodicity. Local time stepping is employed without intermediate interpolation. The errors introduced by the window functions and the multi-domain implementation are quantified and compared to errors related to the initial conditions and from the time iteration scheme. It is concluded that the multi-domain methodology does not introduce significant errors compared to the single-domain method. Examples of scattering from small scale density scatters, sound reflecting from a slitted rigid object and sound propagation through a jet are accurately modelled by the proposed methodology. For problems that can be solved by F-PSTD, the presented methodology can lead to a significant gain in computational efficiency.  相似文献   

3.
李子良 《中国物理 B》2009,18(10):4074-4082
Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are used to investigate gravity waves in atmosphere. By taking advantage of the auxiliary nonlinear ordinary differential equation, periodic wave and solitary wave solutions of the fifth-order KdV--mKdV models with higher-degree nonlinear terms are obtained under some constraint conditions. The analysis shows that the propagation and the periodic structures of gravity waves depend on the properties of the slope of line of constant phase and atmospheric stability. The Jacobi elliptic function wave and solitary wave solutions with slowly varying amplitude are transformed into triangular waves with the abruptly varying amplitude and breaking gravity waves under the effect of atmospheric instability.  相似文献   

4.
A particle velocity-strain, finite-difference (FD) method with a perfectly matched layer (PML) absorbing boundary condition is developed for the simulation of elastic wave propagation in multidimensional heterogeneous poroelastic media. Instead of the widely used second-order differential equations, a first-order hyperbolic leap-frog system is obtained from Biot's equations. To achieve a high accuracy, the first-order hyperbolic system is discretized on a staggered grid both in time and space. The perfectly matched layer is used at the computational edge to absorb the outgoing waves. The performance of the PML is investigated by calculating the reflection from the boundary. The numerical method is validated by analytical solutions. This FD algorithm is used to study the interaction of elastic waves with a buried land mine. Three cases are simulated for a mine-like object buried in "sand," in purely dry "sand" and in "mud." The results show that the wave responses are significantly different in these cases. The target can be detected by using acoustic measurements after processing.  相似文献   

5.
A numerical model for describing the counterpropagation of one-dimensional waves in a nonlinear medium with an arbitrary power law absorption and corresponding dispersion is developed. The model is based on general one-dimensional Navier-Stokes equations with absorption in the form of a time-domain convolution operator in the equation of state. The developed algorithm makes it possible to describe wave interactions in the presence of shock fronts in media like biological tissue. Numerical modeling is conducted by the finite difference method on a staggered grid; absorption and sound speed dispersion are taken into account using the causal memory function. The developed model is used for numerical calculations, which demonstrate the absorption and dispersion effects on nonlinear propagation of differently shaped pulses, as well as their reflection from impedance acoustic boundaries.  相似文献   

6.
Wave propagation along circular cylindrical structures is important for nondestructive-testing applications and shocks in tubes. To simulate elastic wave propagation phenomena in such structures the governing equations in cylindrical coordinates are solved numerically. To reduce the required amount of computer memory and the computational time, the stress components are eliminated in the equilibrium equations. In the resulting coupled partial differential equations, in which only the three displacement components are involved, the derivatives with respect to spatial coordinates and time are approximated using second order central differences. This leads to the present new approach, which is both accurate and efficient. In order to obtain a stable scheme the displacements must be allocated on a staggered grid. The von Neumann stability analysis is performed and the result is compared with an existing empirical criterion. Mechanical energies are observed in order to validate the finite-difference code. Since no material damping or energy dissipation is taken into account in the equations of motion, the total energy must remain constant over time. Only negligible variations are observed during long-term simulations. Dispersion relations are used to check the physical behavior of the waves calculated with the proposed finite-difference method: Theoretically calculated curves are compared with values obtained by a spectrum estimation method, applied to the results of a simulation.  相似文献   

7.
In this paper, we study wave interaction with an emerged porous media. The governing equation is shallow water equations with a friction term of the linearized Dupuit-Forcheimer's formula. From the continuity of surface and horizontal flux, we derived the wave reflection and transmission coefficient formulas. They are similar to the corresponding formulas of the submerged solid bar breakwater. We solve the equations numerically using finite volume method on a staggered grid. The numerical wave reduction in the porous media confirms the analytical wave transmission curve.  相似文献   

8.
The linear wave equation represents the basis of many linear electromagnetic and acoustic propagation problems. Features that a computational model must have, to capture large scale realistic effects (for over the horizon or “OTH” radar communication, for example), include propagation of short waves with scattering and partial absorption by complex topography. For these reasons, it is not feasible to use Green’s Function or any simple integral method, which neglects these intermediate effects and requires a known propagation function between source and observer. In this paper, we describe a new method for propagating such short waves over long distances, including intersecting scattered waves. The new method appears to be much simpler than conventional high frequency schemes: Lagrangian “particle” based approaches, such as “ray tracing” become very complex in 3-D, especially for waves that may be expanding, or even intersecting. The other high frequency scheme in common use, the Eikonal, also has difficulty with intersecting waves.Our approach, based on nonlinear solitary waves concentrated about centroid surfaces of physical wave features, is related to that of Whitham [1], which involves solving wave fronts propagating on characteristics. Then, the evolving electromagnetic (or acoustic) field can be approximated as a collection of propagating co-dimension one surfaces (for example, 2-D surfaces in three dimensions). This approach involves solving propagation equations discretely on an Eulerian grid to approximate the linear wave equation. However, to propagate short waves over long distances, conventional Eulerian numerical methods, which attempt to resolve the structure of each wave, require far too many grid cells and are not feasible on current or foreseeable computers. Instead, we employ an “extended” wave equation that captures the important features of the propagating waves. This method is first formulated at the partial differential equation (PDE) level, as a wave equation with an added “confining” term that involves both a positive and a negative dissipation. Once we have the stable PDE, the discrete formulation is simply a multidimensional PDE with (stable) perturbations caused by the discretization. The resulting discrete solution can then be low order and very simple and yet remain stable over arbitrarily long times. When discretized and solved on an Eulerian grid, this new method allows far coarser grids than required by conventional resolution considerations, while still accounting for the effects of varying atmospheric and topographic features. An important point is that the new method is in the same form as conventional discrete wave equation methods. However, the conventional solution eventually decays, and only the “intermediate asymptotic” solution can be used. Simply by adding an extra term, we show that a nontrivial true asymptotic solution can be obtained. A similar solitary wave based approach has been used successfully in a different problem (involving “Vorticity Confinement”), for a number of years.  相似文献   

9.
The development of a compact fourth-order finite volume method for solutions of the Navier–Stokes equations on staggered grids is presented. A special attention is given to the conservation laws on momentum control volumes. A higher-order divergence-free interpolation for convective velocities is developed which ensures a perfect conservation of mass and momentum on momentum control volumes. Three forms of the nonlinear correction for staggered grids are proposed and studied. The accuracy of each approximation is assessed comparatively in Fourier space. The importance of higher-order approximations of pressure is discussed and numerically demonstrated. Fourth-order accuracy of the complete scheme is illustrated by the doubly-periodic shear layer and the instability of plane-channel flow. The efficiency of the scheme is demonstrated by a grid dependency study of turbulent channel flows by means of direct numerical simulations. The proposed scheme is highly accurate and efficient. At the same level of accuracy, the fourth-order scheme can be ten times faster than the second-order counterpart. This gain in efficiency can be spent on a higher resolution for more accurate solutions at a lower cost.  相似文献   

10.
The aim of this work is to give experimental and numerical results on the behaviour of guided waves that propagate downslope in a free elastic plate with slowly linearly varying thickness. We show experimentally the propagation of adiabatic modes, which are guided waves that adapt to the varying thickness of the plate. As the thickness is decreasing, a given guided wave will reach its thickness cut-off. When this happens, we show that two phenomena occur: the reflection of this wave and its propagation backward in the plate, its conversion into a different guided wave which goes on propagating downslope in the plate. The numerical study is done with the software Ansys, based on the finite element method. The results obtained confirm the experimental ones.  相似文献   

11.
Within the limits of Linear Optics we treat analogies between ordinary and extraordinary waves in uniaxial media which become conspicuous through a nonorthogonal transformation of coordinates. To any ordinary wave solution in unbounded uniaxial media we can construct a corresponding extraordinary wave solution by interchanging electrical and magnetical field components. Boundary conditions for instance for ideal conducting plane surfaces approximately preserve their original form, if the optical axis or the middle wave vector are normal to the surface. The parabolic approximative equations for slowly varying amplitudes are derived, the polarisation of these waves being considered as a slowly varying quantity. Further these approximative equations are expanded to include frequency dispersion. Through the specified transformation we can simplify problems with extraordinary waves.  相似文献   

12.
The use of finite difference schemes to compute the scattering of acoustic waves by surfaces made up of different materials with sharp surface discontinuities at the joints would, invariably, result in the generations of spurious reflected waves of numerical origin. Spurious scattered waves are produced even if a high-order scheme capable of resolving and supporting the propagation of the incident wave is used. This problem is of practical importance in jet engine duct acoustic computation. In this work, the basic reason for the generation of spurious numerical waves is first examined. It is known that when the governing partial differential equations of acoustics are discretized, one should only use the long waves of the computational scheme to represent or simulate the physical waves. The short waves of the computational scheme have entirely different propagation characteristics. They are the spurious numerical waves. A method by which high wave number components (short waves) in the wave scattering process is intentionally removed so as to minimize the scattering of spurious numerical waves is proposed. This method is implemented in several examples from computational aeroacoustics to illustrate its effectiveness, accuracy and efficiency. This method is also employed to compute the scattering of acoustic waves by scatterers, such as rigid wall acoustic liner splices, with width smaller than the computational mesh size. Good results are obtained when comparing with computed results using much smaller mesh size. The method is further extended for applications to computations of acoustic wave reflection and scattering by very small surface inhomogeneities with simple geometries.  相似文献   

13.
A new Dispersion-Relation-Preserving (DRP) scheme has been developed using the Lax-Wendroff methodology. Two collocated grids are placed in a staggered formation and a staggered DRP scheme is used to calculate the spatial differentiation of the propagation and convection terms. A staggered filtering scheme of a six points stencil is developed to complete the transformation from one grid to another. Existing DRP Runge-Kutta schemes are used for the time marching. Stability limits and accuracy issues are investigated using a simple 1D advection equation. The new method is then tested for monopole and quadrupole radiation, diffraction effects of an aperture in a wall, and convection effects of shear flow. All demonstrate the good accuracy and numerical stability of the new method.  相似文献   

14.
This paper is devoted to time domain numerical solutions of two-dimensional (2D) material interface problems governed by the transverse magnetic (TM) and transverse electric (TE) Maxwell's equations with discontinuous electromagnetic solutions. Due to the discontinuity in wave solutions across the interface, the usual numerical methods will converge slowly or even fail to converge. This calls for the development of advanced interface treatments for popular Maxwell solvers. We will investigate such interface treatments by considering two typical Maxwell solvers – one based on collocation formulation and the other based on Galerkin formulation. To restore the accuracy reduction of the collocation finite-difference time-domain (FDTD) algorithm near an interface, the physical jump conditions relating discontinuous wave solutions on both sides of the interface must be rigorously enforced. For this purpose, a novel matched interface and boundary (MIB) scheme is proposed in this work, in which new jump conditions are derived so that the discontinuous and staggered features of electric and magnetic field components can be accommodated. The resulting MIB time-domain (MIBTD) scheme satisfies the jump conditions locally and suppresses the staircase approximation errors completely over the Yee lattices. In the discontinuous Galerkin time-domain (DGTD) algorithm – a popular Galerkin Maxwell solver, a proper numerical flux can be designed to accurately capture the jumps in the electromagnetic waves across the interface and automatically preserves the discontinuity in the explicit time integration. The DGTD solution to Maxwell interface problems is explored in this work, by considering a nodal based high order discontinuous Galerkin method. In benchmark TM and TE tests with analytical solutions, both MIBTD and DGTD schemes achieve the second order of accuracy in solving circular interfaces. In comparison, the numerical convergence of the MIBTD method is slightly more uniform, while the DGTD method is more flexible and robust.  相似文献   

15.
The propagation of an extremely short (one cycle long) pulse of an electromagnetic field in a medium with two equilibrium states is considered theoretically. The analysis is based on the set of Maxwell equations and the Landau-Khalatnikov equation, in which the approximations of the slowly varying envelopes are not used. The solutions of this set that describe the steady-state propagation of a solitary polarization wave and of an electromagnetic pulse are found. In the approximation of a unidirectional wave, a numerical simulation of the propagation and interaction of solitary waves is performed in terms of the model considered.  相似文献   

16.
We present a generalization of the finite volume evolution Galerkin scheme [M. Luká?ová-Medvid’ová, J. Saibertov’a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533– 562; M. Luká?ová-Medvid’ová, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1–30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor–corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.  相似文献   

17.
A dispersion equation for low-frequency waves in a fully ionized plasma with slowly varying density and magnetic field is derived from the two-fluid equations. The solutions are discussed in several limiting cases. Phase-velocity and refractive index surfaces are presented for the fast and slow magneto-acoustic waves and for the shear-Alfvén wave, influenced by the inhomogeneity drifts.  相似文献   

18.
A phenomenological model for thermal relaxation and wave propagation in ideal polyatomic gases is developed by introducing a dynamical non‐equilibrium temperature. The system of equations governing the evolution of the gas is derived and the speeds of propagation of thermo‐mechanical disturbances together with the Rankine‐Hugoniot jump conditions for shock waves are calculated. The hyperbolic theories of heat propagation in incompressible fluids and rigid solids are recovered as particular cases. For rigid solids, the well posedness of the Cauchy problem is proved by a classical method.  相似文献   

19.
This paper presents a new computational framework for the simulation of solid mechanics on general overlapping grids with adaptive mesh refinement (AMR). The approach, described here for time-dependent linear elasticity in two and three space dimensions, is motivated by considerations of accuracy, efficiency and flexibility. We consider two approaches for the numerical solution of the equations of linear elasticity on overlapping grids. In the first approach we solve the governing equations numerically as a second-order system (SOS) using a conservative finite-difference approximation. The second approach considers the equations written as a first-order system (FOS) and approximates them using a second-order characteristic-based (Godunov) finite-volume method. A principal aim of the paper is to present the first careful assessment of the accuracy and stability of these two representative schemes for the equations of linear elasticity on overlapping grids. This is done by first performing a stability analysis of analogous schemes for the first-order and second-order scalar wave equations on an overlapping grid. The analysis shows that non-dissipative approximations can have unstable modes with growth rates proportional to the inverse of the mesh spacing. This new result, which is relevant for the numerical solution of any type of wave propagation problem on overlapping grids, dictates the form of dissipation that is needed to stabilize the scheme. Numerical experiments show that the addition of the indicated form of dissipation and/or a separate filter step can be used to stabilize the SOS scheme. They also demonstrate that the upwinding inherent in the Godunov scheme, which provides dissipation of the appropriate form, stabilizes the FOS scheme. We then verify and compare the accuracy of the two schemes using the method of analytic solutions and using problems with known solutions. These latter problems provide useful benchmark solutions for time dependent elasticity. We also consider two problems in which exact solutions are not available, and use a posterior error estimates to assess the accuracy of the schemes. One of these two problems is additionally employed to demonstrate the use of dynamic AMR and its effectiveness for resolving elastic “shock” waves. Finally, results are presented that compare the computational performance of the two schemes. These demonstrate the speed and memory efficiency achieved by the use of structured overlapping grids and optimizations for Cartesian grids.  相似文献   

20.
This paper deals with small-amplitude waves, described by Maxwell's equations and single-fluid hydrodynamics, in horizontally stratified, continuously varying plasmas with anisotropic electron pressure perturbations. First, two pairs of coupled wave equations in second-order form are obtained. Then, sets of equations in first-order matrix form are derived. One such set, which describes two kinds of vertically propagating transverse waves, is treated by the method of Clemmow and Heading. It is then transformed by Heading's method into a form which is valid throughout reflection regions, and from which a pair of second-order coupled wave equations in Försterling's form is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号