首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sound velocities in molten ((LiF + AgI)) and ((LiBr + AgI)) mixtures have been measured to investigate the relationship between the sound velocity and the temperature and the role of the anion in the (liquid + liquid) phase transition. Our results show that the ((LiBr + AgI)) system is biphasic between the melting point and T = 984 K and becomes monophasic above this temperature. We show that the upper consolute critical temperature for the AgI-containing melts increases with decreasing anion size in the series F > Cl > Br. The ((LiF + AgI)) melt remains biphasic at all temperatures investigated up to T = 1218 K. The temperature coefficients for the sound velocities in the upper and lower phases of the ((LiBr + AgI)) system have opposite signs because of the superposition of the temperature and composition factors. The difference between the magnitudes of the velocities for the coexisting phases decreases exponentially with increasing temperature and is described by a critical exponent of 0.85 for the ((LiBr + AgI)) melt near the critical temperature. This value is 15% less than that found for alkali halide melts, in which long-range Coulomb forces between ions prevail. This difference may result from the fact that silver halides are intermediate between the typical ionic salts and the fully covalently bonded ones.  相似文献   

2.
In this work a thermodynamic assessment of the (LiF + NaF + CaF2 + LaF3) system is reported. For the thermodynamic modeling of the liquid phase, the classical polynomial model, and the modified quasi-chemical model were used in parallel and compared. The extrapolation to higher order systems was done according to the Toop mathematical formalism. Furthermore, differential-scanning calorimetry data of the ternary (LiF + CaF2 + LaF3), (NaF + CaF2 + LaF3), and the quaternary (LiF + NaF + CaF2 + LaF3) mixtures are presented. Good agreement between the experimental data and the thermodynamic assessment was obtained.  相似文献   

3.
In this work the LiF–BeF2, NaF–BeF2, and BeF2–PuF3 binary phase diagrams have been thermodynamically assessed. The first two systems have been optimized based on the known experimental data, whereas the last one has been treated ideally. To describe the excess Gibbs parameters of the liquid solution the modified quasi chemical model based on the quadruplet approximation has been used. The results obtained together with the data of the (LiF + PuF3), (NaF + PuF3), and (LiF + NaF) systems, which have been assessed in previous studies, were used to extrapolate the (LiF + NaF + BeF2 + PuF3) quaternary system. The calculated (LiF + NaF + BeF2) ternary subsystem has been compared with the experimental results published in literature. The nuclear fuel properties such as the melting behaviour, the vapour pressure, or the solubility of PuF3 in the matrix of LiF–NaF–BeF2 have been derived based on our assessment and compared with measurements in literature.  相似文献   

4.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (LiF + NaF + KF + MgF2 + CaF2 + SrF2) system, and optimized model parameters have been found. The (LiF + NaF + KF + MgF2 + CaF2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary and ternary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model for short-range ordering was used for the molten salt phase, and the low-temperature and high-temperature (CaF2 + SrF2) solid solutions were modelled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. Finally, the (Li, Na, K)(Mg, Ca, Sr)F3 perovskite phase was modelled using the Compound Energy Formalism.  相似文献   

5.
(Solid + liquid) phase diagrams have been determined for (hexylamine, or octylamine, or 1,3-diaminopropane + acetonitrile) mixtures. Simple eutectic systems have been observed in these mixtures. (Liquid + liquid) phase diagrams have been determined for (octylamine, or decylamine + propanenitrile, or + butanenitrile) mixtures. Mixtures with propanenitrile and butanenitrile show immiscibility in the liquid phase with an upper critical solution temperature, UCST. (Solid + liquid) phase diagrams have been correlated using NRTL, NRTL 1, Wilson and UNIQUAC equations. (Liquid + liquid) phase diagrams have been correlated using NRTL equation.  相似文献   

6.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (LiF + LiCl + NaF + NaCl + KF + KCl + MgF2 + MgCl2 + CaF2 + CaCl2 + SrF2 + SrCl2) system, and optimized model parameters have been found. The (LiCl + NaCl + KCl + MgCl2 + CaCl2 + SrCl2), (LiF + NaF + KF + MgF2 + CaF2 + SrF2), and (LiF + LiCl + NaF + NaCl + KF + KCl + MgF2 + MgCl2 + CaF2 + CaCl2) subsystems have been critically evaluated previously. The model parameters for the common-ion binary, common-anion ternary, and reciprocal ternary subsystems (i.e. systems with two cations and two anions) can be used to predict thermodynamic properties and phase equilibria for the multicomponent reciprocal system. The Modified Quasichemical Model in the Quadruplet Approximation was used for the molten salt phase. This model takes into account both first-nearest-neighbor (cation–anion) and second-nearest-neighbor (cation–cation and anion–anion) short-range ordering, and the coupling between them. Finally, the CaFCl–SrFCl solid solution was modeled using the Compound Energy Formalism.  相似文献   

7.
This contribution is devoted to the experimental characterization of interfacial tensions of a representative group of binary mixtures pertaining to the (ethanol + linear hydrocarbon) series (i.e. octane, decane, dodecane, and tetradecane). Experimental measurements were isothermically performed using a maximum differential bubble pressure technique, which was applied over the whole mole fraction range and over the temperature range 298.15 K < T/K < 318.15 K.Experimental results show that the interfacial tensions of (ethanol + octane or decane) negatively deviate from the linear behavior and that sharp minimum points on concentration, or aneotropes, are observed for each isotherm. The interfacial tensions of (ethanol + dodecane or tetradecane), in turn, are characterized by combined deviations from the linear behavior, and inflecting behavior observed on concentration for each isotherm. The experimental evidence also shows that these latter mixtures are close to exhibit aneotropy.For the case of (ethanol + octane or decane) mixtures, aneotropy was clearly induced by the similarity of the interfacial tension values of the constituents. The inflecting behavior of the interfacial tensions of (ethanol + dodecane or tetradecane), in turn, was observed in the vicinity of the coordinates of the critical point of these mixtures, thus pointing to the fact that the quasi-aneotropic singularity that affects these mixtures was provoked by the proximity of an immiscibility gap of the liquid phase.Finally, the experimental data of interfacial tensions were smoothed with the Scott–Myers expansion, from which it is possible to conclude that the observed aneotropic concentrations weakly depend on temperature for all the analyzed mixtures.  相似文献   

8.
The solubility of sodium 4-nitrotoluene-2-sulfonate (NTSNa) in binary solvent mixtures (methanol + water), (ethanol + water), and (2-methoxyethanol + water) was investigated over the temperature range from (288 to 344) K. The mole fraction of water in solvent mixtures ranged from 0 to 0.8. The solubility data are described by the electrolyte non-random two-liquid (E-NRTL) model. The E-NRTL binary interaction parameters are expressed as a function of temperature, and were obtained from the experimental data. The root-mean-square deviations of solubility temperature varied from (0.20 to 1.35) K.  相似文献   

9.
Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model.  相似文献   

10.
Total vapour pressures and excess molar volumes, measured at the temperature 313.15 K, are reported for three binary mixtures (2-pyrrolidone + water), (2-pyrrolidone + methanol) and (2-pyrrolidone + ethanol). The results are compared with previously obtained data for binary mixtures (amide + A), where amide=N-methylformamide, N,N-dimethylformamide and N-methylacetamide, and A= water, methanol, and ethanol.  相似文献   

11.
(Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of (methanol + aniline + n-octane) and (methanol + aniline + n-dodecane) at T = 298.15 K and ambient pressure are reported. The compositions of liquid phases at equilibrium were determined and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of methanol for the extraction of aniline from the (aniline + n-octane or n-dodecane) mixtures are calculated and compared. Based on these comparisons, the efficiency of methanol for the extraction of aniline from (aniline + n-dodecane) mixtures is higher than that for the extraction of aniline from (aniline + n-octane) mixtures. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. From the phase diagrams and the selectivity factors, it is concluded that methanol may be used as a suitable solvent in extraction of aniline from (aniline + n-octane or n-dodecane) mixtures.  相似文献   

12.
In this study, the poly(methyl methacrylate-co-2,2,3,4,4,4-hexafluorobutyl methacrylate) [P(MMA-co-HFBMA)] as a fluoric copolymer was prepared using dispersion polymerization in supercritical carbon dioxide. The characterization for the prepared P(MMA-co-HFBMA) was investigated with varied ratios of MMA vs HFBMA (30:1, 25:1, 22:1 and 20:1), 2,2′-azobisisobutyronitrile (AIBN) amounts (1.0, 2.0, 3.0, and 4.0) wt% and the weight average molar mass (Mw).Experimental cloud-point data at temperatures to 454 K and pressures up to 184 MPa are reported for binary and ternary mixtures of P(MMA-co-HFBMA) in supercritical CH2F2, CHF3 and CHClF2. Experiments are performed in order to determine phase behaviour of binary system for the P(MMA-co-HFBMA) (mole ratio: 25:1, AIBN: (1.0, 2.0, 3.0 and 4.0) wt%) + supercritical solvents (CH2F2, CHF3 and CHClF2) mixtures at temperature range from (333 to 454) K and pressure up to 184 MPa. It appears that the {P(MMA-co-HFBMA) + CH2F2} mixtures show the upper critical solution temperature (UCST) type behaviour with negative slope, while the {P(MMA-co-HFBMA) + CHF3} and {P(MMA-co-HFBMA) + CHClF2} mixtures show lower critical solution temperature (LCST) type curve with positive slope. Cloud-point curves for the P(MMA-co-HFBMA) [mole ratio: 30:1 (Mw = 186,000 g · mol−1), 25:1 (Mw = 176,000 g · mol−1), 22:1 (Mw = 158,000 g · mol−1) and 20:1 (Mw = 126,000 g · mol−1); AIBN: 1.0 wt%) + supercritical (CH2F2, CHF3 and CHClF2) mixtures show a negative slope for the {P(MMA-co-HFBMA) + CH2F2}, and a positive slope for the {P(MMA-co-HFBMA) + CHF3} and {P(MMA-co-HFBMA) + CHClF2} mixtures at temperatures to 454 K and pressure up to 184 MPa. Also, the impact of MMA on phase behaviour for the {P(MMA-co-HFBMA) (mole ratio: 25:1; AIBN: (1.0 and 2.0) wt%) + CH2F2} mixtures are measured in changes of the (pressure + temperature) slope from UCST behaviour to LCST behaviour, and with MMA co-solvent concentrations of (0.0 to 40.1) wt%.  相似文献   

13.
Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + ethanol + water), and for binary constituent (N,N-dimethylacetamide + ethanol). The present results are also compared with previously obtained data for (amide + ethanol) binary mixtures, where amide = N-methylformamide, N,N-dimethylformamide, N-methylacetamide, 2-pyrrolidinone, and N-methylpyrrolidinone. We found that excess Gibbs free energy of mixing for binary (amide + ethanol) mixtures varies roughly linearly with the molar volume of amide.  相似文献   

14.
Densities of binary mixtures of N,N-dimethylacetamide (DMA) with water (H2O) or water-d2 (D2O) were measured at the temperatures from T=277.13 K to T=318.15 K by means of a vibrating-tube densimeter. The excess molar volumes VmE, calculated from the density data, are negative for the (H2O + DMA) and (D2O + DMA) mixtures over the entire range of composition and temperature. The VmE curves exhibit a minimum at x(DMA)≅0.4. At each temperature, this minimum is slightly deeper for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures. The difference between D2O and H2O systems becomes smaller when the temperature increases. The VmE results were correlated using a modified Redlich–Kister expansion. The partial molar volume of DMA plotted against x(DMA) goes through a sharp minimum in the water-rich region around x(DMA)≅0.08. This minimum is more pronounced the lower the temperature and is deeper in D2O than in H2O at each temperature. Again, the difference becomes smaller as the temperature increases. The excess expansion factor αE plotted against x(DMA) exhibit a maximum in the water rich region of the mole fraction scale. At each temperature, this maximum is higher for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures, and the difference becomes smaller as the temperature increases. At its maximum, αE can be even more than 25 per cent of total value of the cubic expansion coefficient α in the (H2O + DMA) and (D2O + DMA) mixtures.  相似文献   

15.
The aim of this paper is to report experimental densities, excess molar enthalpies and refractive indexes of the ternary system (propyl propanoate + hexane + toluene) and of the corresponding binary mixtures (propyl propanoate + toluene) and (hexane + toluene) at the temperature 298.15 K and atmospheric pressure, over the whole composition range. Also, the excess molar volumes and the changes in the refractive index on mixing have been calculated from the measured data for all mixtures.  相似文献   

16.
Low transition temperature mixtures (LTTMs), also known as deep eutectic solvents, show properties that make them suitable as entrainers for extractive distillation. Two different low transition temperature mixtures were considered as potential entrainers for the extractive distillation of the azeotropic mixture (isopropanol + water). (Lactic acid + choline chloride) (2:1) and (glycolic acid + choline chloride) (3:1) were selected for this work. (Vapor + liquid) equilibrium measurements of the pseudo-binary systems (isopropanol + LTTM) and (water + LTTM) were measured at different concentrations of LTTM in a pressure range of 10 to 100 kPa. (Vapor + liquid) equilibrium data of the pseudo-ternary system (isopropanol + water + LTTM) were also measured at constant pressure (100 kPa) and constant LTTM molar fraction of 0.05 and 0.1. It was found that these LTTMs cannot break the azeotrope at those concentrations. However, the azeotrope was displaced to a much higher isopropanol concentration. The NRTL model was successfully applied to fit the experimental data.  相似文献   

17.
Selectivity factors and partition coefficients of ethylene carbonate and the (ethylene carbonate + sulfolane) solvent mixture for the separation of benzene or toluene from (benzene or toluene + n-heptane) are obtained from the experimental (liquid + liquid) equilibrium data for ternary mixtures of (ethylene carbonate + benzene or toluene + n-heptane) at temperatures of (303.15 and 313.15) K and quaternary mixture of (ethylene carbonate + sulfolane + benzene + n-heptane) at 303.15 K. The composition of liquid phases at equilibrium was determined by gas–liquid chromatography and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The parameters of the models were evaluated and reported. The phase diagrams for the mixtures studied are presented and the correlated tie line results have been compared with the experimental results. The comparisons indicate the applicability of the UNIQUAC and NRTL activity coefficients model for (liquid + liquid) equilibrium calculations of the mixtures studied.  相似文献   

18.
The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol), (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography.The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents.The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents.  相似文献   

19.
On this paper, experimental (liquid + liquid) equilibrium (LLE) results are presented for systems composed of β-citronellol and aqueous 1-propanol or acetone. To evaluate the phase separation properties of β-citronellol in aqueous mixtures, LLE values for the ternary systems (water + 1-propanol + β-citronellol) and (water + acetone + β-citronellol) were determined with a tie-line method at T = (283.15, 298.15, and 313.15 ± 0.02) K and atmospheric pressure. The reliability of the experimental tie-lines was verified by the Hand and Bachman equations. Ternary phase diagrams, distribution ratios of 1-propanol and acetone in the mixtures are shown. The effect of the temperature on the ternary (liquid + liquid) equilibria was examined and discussed. The experimental LLE values were satisfactorily correlated by extended UNIQUAC and modified UNIQUAC models.  相似文献   

20.
A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius–Andrade and Vogel–Tamman–Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号