首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fluid Phase Equilibria》2002,202(2):359-366
The solubilities of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol (AEPD) were measured at 313.15, 323.15, and 333.15 K over the partial pressure range of carbon dioxide from 1 to 3000 kPa. The concentrations of aqueous AEPD solutions were 10 and 30 mass%. The solubilities of carbon dioxide in aqueous 10 mass% AEPD solutions at 313.15 K and 30 mass% at 333.15 K were compared with those in aqueous solutions of various amines such as monoethanolamine (MEA), 2-amino-2-methyl-1,3-propanediol (AMPD), 2-amino-2-methyl-1-propanol (AMP), and N-methyldiethanolamine (MDEA).  相似文献   

2.
In this work, new solubility values for CO2 absorption in aqueous solutions of N-methyldiethanolamine (MDEA) in the presence of different mole ratios of 2-((2-aminoethyl)amino)ethanol (AEEA) at low pressures are obtained. The total molar amine concentration of all the solutions has been fixed equal to 3.360 mol · L−1 (5.370 mol amine · kg−1 water). The mole ratio of AEEA/MDEA was set to 0.12500, 0.10000 and 0.05000. The experimental total pressure varied from (7.3 to 386.6) kPa and the experimental temperature was set to (313.15, 328.15, 343.15 and 358.15) K. The electrolyte SAFT-HR (eSAFT-HR) equation of state (EoS) (Najafloo et al., 2014) has been successfully applied to model the solubility of CO2 in aqueous mixtures of AEEA and MDEA. The overall average absolute relative per cent deviation (AAD%) in calculating the total pressure as a function of CO2 loading is 7.74 for (AEEA + MDEA + CO2 + H2O) quaternary system at the four values of temperature. To verify the predictive ability of the model, the eSAFT-HR EoS was extrapolated to the Zoghi and Feyzi (2013) solubility results of the same quaternary system that were obtained at higher pressures or higher CO2 loadings at the same temperatures. The AAD of the present model is 11.39% lower.  相似文献   

3.
The acid–base properties of four aminophenol derivatives, namely m-aminophenol (L1), 4-amino-2-hydroxytoluene (L2), 2-amino-5-ethylphenol (L3) and 5-amino-4-chloro-o-cresol (L4), are studied by potentiometric and titration calorimetric measurements in NaCl(aq) (0 ? I ? 3 mol · kg?1) at T = 298.15 K. The dependence of the protonation constants on ionic strength is modelled by the Debye–Hückel, SIT (Specific ion Interaction Theory) and Pitzer equations. Therefore, the values of protonation constants at infinite dilution and the relative interaction coefficients are calculated. The dependence of protonation enthalpies on ionic strength is also determined. Distribution (2-methyl-1-propanol/aqueous solution) measurements allowed us to determine the Setschenow coefficients and the activity coefficients of neutral species. Experimental results show that these compounds behave in a very similar way, and common class parameters are reported, in particular for the dependence on ionic strength of both protonation constants and protonation enthalpies.  相似文献   

4.
The interaction between the zwitterionic buffers (3-[N-bis(2-hydroxyethyl)amino]-2-hydroxy propane sulfonic acid, N-(2-actamido)-2-aminoethane sulfonic acid, and 3-[(1,1-dimethyl-2-hydroxyethyl)amino]-2-hydroxy propane sulfonic acid) with some divalent transition metal ions (CuII, NiII, CoII, ZnII, and MnII) were studied at different temperatures (298.15 to 328.15) K at ionic strength I = 0.1 mol · dm−3 NaNO3 and in the presence of 10%, 30%, and 50% (w/w) dioxene by using potentiometry. The thermodynamic stability constants were calculated as well as the free energy change for the 1:1 binary complexation. The protonation constants of the zwitterionic buffers were also determined potentiometrically under the above conditions.  相似文献   

5.
Protocatechuic acid, a major metabolite of antioxidant polyphenols found in green tea, has been shown to prevent carcinogenesis or antitumor growth in vitro and in vivo studies. The dilution enthalpies ΔdilHm, dissociation enthalpies ΔdisHm and thermodynamic dissociation constants Ka for protocatechuic acid in aqueous NaCl or KCl solutions were simultaneously determined by mixing-flow microcalorimetry at T = 298.15 K. In order to verify the reliability of the fitted dissociation parameters, the values of dissociation enthalpies and thermodynamic dissociation constants were also determined by isothermal titration calorimetry and electrical conductivity methods. The Ka values obtained through the proposed method agree well with those reported in literatures and obtained by other techniques. Enthalpic interaction coefficients (h2, h3 and h4) were computed according to the McMillan–Mayer model. The trends of h2 and ΔdisHm for protocatechuic acid with increasing salt molality in both the salt solutions were obtained. The different influence of KCl and NaCl on the values of h2 and ΔdisHm were discussed in terms of (solute + solute) and (solute + solvent) interactions. The results showed that it is possible to perform in a single calorimetric experiment the simultaneous determination of dilution enthalpies, dissociation enthalpies and constants in a given solvent.  相似文献   

6.
《Fluid Phase Equilibria》2003,204(2):245-266
Equations were determined for the calculation of the stoichiometric (molality scale) dissociation constant, Km, of lactic acid in aqueous salt solutions at 291.15 and 298.15 K from the thermodynamic dissociation constant, Ka, of this acid and from the ionic strength, Im, of the solution. The salt alone determines mostly the ionic strength of the solutions considered in this study, and the equations for Km were based on the single-ion activity coefficient equations of the Hückel type. New data measured by potentiometric titrations in a glass electrode cell at 298.15 K and the literature data obtained by Larsson and Adell with quinhydrone (qh) electrode cells at 291.15 K were used in the estimation of the parameters for the Hückel equations (HE) of lactate ions in NaCl and KCl solutions. The Harned cell data measured at 298.15 K by Nims and Smith were used to obtain the activity parameters for lactate ions in dilute LiCl, BaCl2 and SrCl2 solutions. The conductance data measured at 298.15 K by Martin and Tartar were used to determine the thermodynamic value of the dissociation constant of lactic acid. By means of the calculation method suggested in this study, Km can be obtained almost within experimental error at least up to Im of about 0.5 mol kg−1 for lactic acid in NaCl and KCl solutions at the two temperatures considered. The Km values obtained by this method were compared to those obtained by the calculation methods presented recently in the literature for a general treatment of thermodynamics of weak acids in NaCl and KCl solutions.  相似文献   

7.
New experimental equilibrium data were obtained for the solubility of carbon dioxide in an aqueous solution with 30 wt.% of 2-((2-aminoethyl)amino)ethanol (AEEA) at temperatures ranging from (313.2 to 368.2) K and CO2 partial pressures ranging from above atmospheric to 4400 kPa. A thermodynamic model based on the Deshmukh–Mather method was applied to correlate and predict the CO2 solubility in aqueous AEEA solutions. The binary interaction parameters and equilibrium constants for the proposed reactions were determined by data regression. Using the adjusted parameters, equilibrium partial pressures of CO2 were calculated and compared with the corresponding experimental values at the selected temperatures and pressures. Values of carbon dioxide solubility at other temperatures reported in the literature were also calculated. The average absolute deviation for all of the data points was found to be 8.2%. The enthalpy change of the absorption of CO2 in the 30 wt.% aqueous solution of AEEA was also estimated with our model.  相似文献   

8.
Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N2O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N2O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.  相似文献   

9.
《Fluid Phase Equilibria》2004,224(1):83-88
The gas solubility of hydrogen sulfide in aqueous solutions of 32.5 wt.% N-methyldiethanolamine (MDEA) and 12.5 wt.% diethanolamine with 4, 6, and 10 wt.% 2-amino-2-methyl-1-propanol, at 313.15, 343.15, and 393.15 K, has been measured, using a volumetric method for the analysis of the liquid phase, over a range of pressure from 2.5 to 1036 kPa. The experimental results of the gas solubility are given as the partial pressure of H2S against its mole ratio α (mol H2S/mol total alkanolamine) and mole fraction of H2S at each temperature studied. Enthalpies of solution of H2S have been derived from the pressure-temperature concentration data. Experimental solubility data obtained in our laboratory for H2S and CO2 are compared, and it is possible to establish that the aqueous solutions of MDEA, DEA, and AMP studied in this work are highly selective towards H2S under the same conditions of pressure and temperature.  相似文献   

10.
Low-temperature calorimetric measurements have been performed on DyBr3(s) in the temperature range (5.5 to 420 K ) and on DyI3(s) from T=4 K to T=420 K. The data reveal enhanced heat capacities below T=10 K, consisting of a magnetic and an electronic contribution. From the experimental data on DyBr3(s) a C0p,m (298.15 K) of (102.2±0.2) J·K−1·mol−1 and a value for {S0m (298.15 K)  S0m (5.5 K)} of (205.5±0.5) J·K−1·mol−1, have been obtained. For DyI3(s), {S0m (298.15 K)  S0m (4 K)} and C0p,m (298.15 K) have been determined as (226.9±0.5) J·K−1·mol−1 and (103.4±0.2) J·K−1·mol−1, respectively. The values for {S0m (5.5 K)  S0m (0)} for DyBr3(s) and {S0m (4 K)  S0m (0)} for DyI3(s) have been calculated, giving S0m (298.15 K)=(212.3±0.9) J·K−1·mol−1 in case of DyBr3(s) and S0m (298.15 K) =(233.1±0.7) J·K−1·mol−1 for DyI3(s). The high-temperature enthalpy increment has been measured for DyBr3(s) in the temperature range (525 to 799 K) and for DyI3(s) in the temperature range (525 to 627 K). From the results obtained and enthalpies of formation from the literature, thermodynamic functions for DyBr3(s) and DyI3(s) have been calculated from T→0 to their melting temperatures at 1151.0 K and 1251.5 K, respectively.  相似文献   

11.
The previous isopiestic investigations of HTcO4 aqueous solutions at T = 298.15 K are believed to be unreliable, because of the formation of a ternary mixture at high molality. Consequently, published isopiestic molalities for aqueous HTcO4 solutions at T = 298.15 K were completed and corrected. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for pertechnetic acid HTcO4 were determined by direct water activity measurements. These measurements extend from molality m = 1.4 mol · kg−1 to m = 8.32 mol · kg−1. The variation of the osmotic coefficient of this acid in water is represented mathematically. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scale. The density law leads to the partial molar volume variations for aqueous HTcO4 solutions at T = 298.15 K, which are compared with published data.  相似文献   

12.
The densities of tetra-n-butylammonium bromide in 1-propanol, 1-butanol, acetone at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 323.15) K and sound velocities at 298.15 K have been measured. From these data apparent molar volumes VΦ at (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, and 323.15) K and the apparent molar isenotropic compressibility KS,Φ, at T = 298.15 K of tetrabutylammonium bromide in nonaqueous solvents have been determined. The apparent molar volumes and the apparent molar isenotropic compressibilities were fitted to the Redlich, Rosenfeld, and Mayer equation as well as to the Pitzer equation yielding infinite dilution data, which were compared to the similar quantities for tetrabutylphosphonium bromide. Moreover, the acoustical parameters such as intermolecular free length (Lf), relative association (RA), Rao’s molar sound function (Rm), and salvation number (Sn) were calculated using the experimental data of density and sound velocity at T = 298.15 K for ammonium and phosphonium bromides. The obtained data suggest the penetration of the acetone molecule within the intraionic free space of the tetrabutyl-ammonium and phosphonium cations.  相似文献   

13.
The protonation equilibria for 20 standard α-amino acids in solutions have been studied pH-potentiometrically. The dissociation constants (pKa) of 20 amino acids and the thermodynamic functions (ΔG, ΔH, ΔS, and δ) for the successive and overall protonation processes of amino acids have been derived at different temperatures in water and in three different mixtures of water and dioxane (mole fractions of dioxane were 0.083, 0.174, and 0.33). Titrations were also carried out in water ionic strengths of (0.15, 0.20, and 0.25) mol · dm−3 NaNO3, and the resulting dissociation constants are reported. A detailed thermodynamic analysis of the effects of organic solvent (dioxane), temperature and ionic strength influencing the protonation processes of amino acids is presented and discussed to determine the factors which control these processes.  相似文献   

14.
At a constant ionic strength corresponding to human urine (Ic =  0.300 mol · dm  3), the solubilities of xanthine were measured as a function of   lg{c (H + ) / co} (co =  1 mol · dm  3) at the temperatures T =  298.15 K and T =  310.15 K, respectively. Highly reproducible solubility and dissociation constants were obtained. Also, for the first time, the dissolution enthalpy of xanthine was determined calorimetrically. The values of this quantity obtained from both calorimetric determination and temperature dependence of solubility equilibrium constants are thermodynamically consistent.  相似文献   

15.
Isopiestic vapor-pressure measurements were made for Rb 2SO 4(aq) from molalitym =  (0.16886 to 1.5679 )mol · kg  1atT =  298.15 K and from m =  (0.32902 to 1.2282 )mol · kg  1at T =  323.15 K, and for Cs 2SO4 (aq) from m =  (0.11213 to 3.10815 )mol · kg  1at T =  298.15 K and fromm =  (0.11872 to 3.5095 )mol · kg  1atT =  323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic information for these systems were reviewed and the isopiestic equilibrium molalities and dilution enthalpies were critically assessed and recalculated in a consistent manner. Values of the four parameters of an extended version of Pitzer`s model for osmotic and activity coefficients with an ionic-strength dependent third virial coefficient were evaluated for both systems at both temperatures, as were those of the usual three-parameter Pitzer model. Similarly, parameters of Pitzer`s model for the relative apparent molar enthalpies of dilution were evaluated at T =  298.15 K for both Rb 2SO 4(aq) and Cs 2SO 4(aq) for the more restricted range of m⩽ 0.101 mol · kg  1. Values of the thermodynamic solubility product Ks(Rb2 SO 4, cr, 298.15 K )  =  (0.1392  ±  0.0154) and the CODATA compatible standard molar Gibbs free energy of formationΔfGmo (Rb 2SO 4, cr, 298.15 K )  =   (1316.91  ±  0.59)kJ · mol  1, standard molar enthalpy of formationΔfHmo (Rb 2SO 4, cr, 298.15 K )  =   (1435.07  ±  0.60)kJ · mol  1, and standard molar entropy S mo(Rb2 SO 4, cr, 298.15 K )  =  (199.60  ±  2.88)J · K  1· mol  1were derived. A sample of one of the lots of Rb 2SO 4(s) used for part of our isopiestic measurements was analyzed by ion chromatography, and was found to be contaminated with potassium and cesium in amounts that significantly exceeded the claims of the supplier. In contrast, analysis by ion chromatography of a lot of Cs 2SO 4(s) used for some of our experiments showed it was highly pure.  相似文献   

16.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of 4-chloro-3-nitroaniline and 5-chloro-2-nitroaniline, in the condensed phase, were derived from their standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and HCl · 600H2O(l), measured by rotating bomb combustion calorimetry. From the temperature dependence of the vapour pressures of these compounds, measured by the Knudsen effusion technique, their standard molar enthalpies of sublimation, at T = 298.15 K, were derived by means of the Clausius–Clapeyron equation. The Calvet microcalorimetry was also used to measure the standard molar enthalpies of sublimation of these compounds, at T = 298.15 K. The combination of the standard molar enthalpies of formation in the condensed phases and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation in the gaseous phase at T = 298.15 K for each isomer. Further, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were also derived.The standard molar enthalpies of formation, in the gaseous phase of all the chloronitroaniline isomers were also estimated by the Cox scheme and by the use of computational thermochemistry and compared with the available experimental values.  相似文献   

17.
The standard (p   =  0.1MPa) molar enthalpies of combustion in oxygen, at T =  298.15 K, for crystalline picolinamide (2-NH2COPy), nicotinamide (3-NH2COPy), isonicotinamide (4-NH2COPy), nicotinamide N -oxide (3- NH2COPyNO), and isonicotinamide N - oxide (4-NH2COPyNO) were measured by static-bomb calorimetry. These values were used to derive the standard molar enthalpies of formation of the crystalline compounds. The standard molar enthalpies of sublimation, at T =  298.15 K, for the three pyridinecarboxamide isomers were measured by microcalorimetry and the standard molar enthalpies of sublimation for the two pyridinecarboxamide N -oxide compounds were measured by a mass-loss effusion technique. From the enthalpies of formation of the gaseous compounds, the molar dissociation enthalpies Dmoof the (N + – O  ) covalent bonds were derived. Comparison has been made with Dmo(N–O) values in pyridine N -oxide derivatives.  相似文献   

18.
The heat capacity of Ir(C5H7O2)3 has been measured by the adiabatic method within the temperature range (5 to 305) K. The thermodynamic functions (entropy, enthalpy, and reduced Gibbs free energy) at 298.15 K have been calculated using the obtained experimental heat capacity data. A connection has been found between the entropy and the volume of the elementary crystalline cell for β-acetylacetonates of some metals. The reasons for this interdependence are discussed. The values of entropies at T = 298.15 K have been calculated for all the metal acetylacetonates on which there are structural data.  相似文献   

19.
In this paper, physical properties of a high purity sample of the ionic liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], and its binary mixtures with methanol, ethanol, 1-propanol, and 2-propanol were measured at atmospheric pressure. The temperature dependence of density, refractive index and speed of sound (293.15 to 343.15) K and dynamic viscosity (298.15 to 343.15) K were studied at atmospheric pressure by conventional techniques for the pure ionic liquid. For its mixtures with alcohols, density, speed of sound, and refractive index were measured at T = 298.15 K over the whole composition range. The thermal expansion coefficient of the [PMim][NTf2] was calculated from the experimental results using an empirical equation, and values of the excess molar volume, excess refractive index, and excess molar isentropic compressibility for the binary systems at the above mentioned temperature, were calculated and fitted to the Redlich–Kister equation. The heat capacity of the pure ionic liquid at T = 298.15 K was determined using DSC.  相似文献   

20.
The reaction kinetics of 4,6-dinitrobenzofuroxan with five heterocyclic amines was investigated spectrophotometrically (UV–Vis) in acetonitrile at 20 °C. It was observed that the rate constants of these reactions increased as follows: 2-aminopyrimidine > 2-aminothiazole > 2-aminobenzothiazole > 5-amino-3,4-dimethylisoxazole > 2-amino-5-trifluoromethyl-1,3,4-thiadiazole. Further, second-order rate constants (k1) pertaining to the C–N and C–C bond forming step of these complexation processes fit to the three parameter equation log k (20 °C) = sN (N + E), allowing the determination of the nucleophilicity parameters (N) of the five heterocyclic amines. The heterocyclic amines were subsequently ranked on the comprehensive nucleophilicity scale defined by Mayr et al. (2003), providing a direct comparison of n-, π-, and σ-nucleophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号