首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For an infinite elastic plane with a sharp V-notch under the action of symmetrically loading at infinity, the length of crack initiation ahead of the V-notch’s tip is estimated according to a modified Griffith approach. Applying a new conservation integral to the perfectly plastic strip (Dugdale model) ahead of the V-notch’s tip, the relationship between notch stress intensity factor (NSIF) and notch tip opening displacement (NTOD) is presented. Also, the relationship between NSIF and perfectly plastic strip size (PPSS) is found. Since there are three fracture parameters (NSIF, NTOD, and PPSS) with changeable notch opening angle in two basic relationships, it is necessary to select one critical parameter with changeable notch opening angle or two independent critical parameters, respectively. With the help of a characteristic length, it is found by this new conservation integral that the NSIF, NTOD and energy release rate are equivalent in the case of small-scale yielding. Especially, the characteristic length possesses clear physical meaning and, for example, depends on both the critical NSIF and SIF or both the NTOD and CTOD, respectively, in which SIF and CTOD are from the tip of a crack degenerated from the sharp V-notch. The dependence of NSIF on NTOD and PPSS is presented according to the equivalence, and the critical NSIF depending on the critical NTOD with a notch opening angle is also predicted.  相似文献   

2.
An interaction (energy) integral is derived for the computation of mixed-mode stress intensity factors (SIFs) in nonhomogeneous materials with continuous or discontinuous properties. This method is based on a conservation integral that relies on two admissible mechanical states (actual and auxiliary fields). In general, the interaction energy contour integral is converted into an equivalent domain integral in numerical computations. It can be seen from the equivalent domain integral, the integrand does not involve any derivatives of material properties. Moreover, the formulation can be proved valid even when the integral domain contains material interfaces. Therefore, it is not necessary to limit the material properties to be continuous for the present method. Due to these advantages the application range of the interaction integral method can be greatly enlarged. The numerical implementation of the derived expression is combined with the extended finite element method (XFEM). Using this method, the influences of material properties on the mixed-mode SIFs are investigated for four types of material properties selected in this work. Numerical results show that the mechanical properties and their first-order derivatives can affect mode I and II SIFs greatly, while the higher-order derivatives affect the SIFs very slightly.  相似文献   

3.
This paper addresses the conservation laws in finite brittle solids with microcracks. The discussion is limited to the 2-D cases. First, after considering the combination of the Pseudo-Traction Method and the indirect Boundary Element Method, a versatile method for solving multi-crack interacting problems in finite plane solids is proposed, by which the fracture parameters (SIF and path-independent integrals) can be calculated with a desirable accuracy. Second, with the aid of the method proposed, the roles the conservation laws play in the fracture analysis for finite microcracking solids are studied. It is concluded that the conservation laws do play important roles in not only the fracture analysis but also the analysis of damage and stability for the finite microcracking system. Finally, the physical interpretation of the M-integral is discussed further. An explicit relation between the M-integral and the crack face area, i.e., M = GS, has been discovered using the analytical method, which can shed some light on the Damage Mechanics issues from a different perspective.  相似文献   

4.
In this paper, a numerical analysis of impact interfacial fracture for a piezoelectric bimaterial is provided. Starting from the basic equilibrium equation, a dynamic electro-mechanical FEM formulation is briefly presented. Then, the path-independent separated dynamic J integral is extended to piezoelectric bimaterials. Based on the relationship of the path-independent dynamic J integral and the stress and electric displacement intensity factors, the component separation method is used to calculate the stress and electric displacement intensity factors for piezoelectric bimaterials in this finite-element analysis. The response curves of the dynamic J integral, the stress and electric displacement intensity factors are obtained for both homogeneous material (PZT-4 and CdSe) and CdSe/PZT-4 bimaterial. The influences of the piezoelectricity and the electro-mechanical coupling factor on these responses are discussed. The effects of an applied electric field are also discussed.  相似文献   

5.
In this work the continuum theory of defects has been revised through the development of kinematic defect potentials. These defect potentials and their corresponding variational principles provide a basis for constructing a new class of conservation laws associated with the compatibility conditions of continua. These conservation laws represent configurational compatibility conditions which are independent of the constitutive behavior of the continuum. They lead to the development of a new concept termed configurational compatibility, dual to the concept of configurational force. The contour integral of the corresponding conserved quantity is path-independent, if the domain encompassed by the integral is defect-free. It is shown that the Peach-Koehler force can be recovered as one of these invariant integrals. Based on the proposed defect potentials and their corresponding defect energies, two-field multiscale mixed variational principles can be employed to construct multiscale energy momentum tensors. An application is outlined in the form of a mode III elasto-plastic crack problem for which the new configurational quantities are calculated.  相似文献   

6.
In this study, a procedure for calculating the generalized stress intensity factor (GSIF) for 2D sliding complete contacts is presented. The method is based on a domain integral equivalent to a path-independent integral. The domain character of the approach makes it very suitable for the post-processing of finite element solutions. The robustness and accuracy of the method are assessed through numerical examples, comparing the obtained results with other techniques, such as stress extrapolation and the path-independent contour integral. In addition, the multiplier constants for other terms in the expansion series are also computed.  相似文献   

7.
Fracture of piezoelectromagnetic materials   总被引:12,自引:0,他引:12  
The crack problem in a medium possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects is considered. A conservative integral is derived based on the governing equations for magnetoelectroelastic media. Closed-form solution is obtained for an anti-plane crack in an infinite medium. The conservative integral is used to obtain the path-independent integral near the crack tip. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of a crack tip are derived. It is found that the path-independent integral around the crack tip equals the energy release rate. In the absence of applied mechanical loads, the energy release rate is always negative.  相似文献   

8.
A plane crack problem of nonhomogeneous materials with interfaces subjected to static thermal loading is investigated. A modified interaction energy integral method (IEIM) is developed to obtain the mixed-mode thermal stress intensity factors (TSIFs). Compared with the previous IEIM, the original point of this paper is: the domain-independence of the modified IEIM still stands in nonhomogeneous materials with interfaces under thermal loading. Therefore, the modified IEIM can still be applied to obtain the TSIFs of nonhomogeneous material even if the integral domain includes interfaces. The modified IEIM is combined with the extended finite element method (XFEM) to solve several thermal fracture problems of nonhomogeneous materials. Good agreement can be obtained compared with the analytic solutions and the domain-independence of the IEIM is verified. Therefore, the present method is effective to study the TSIFs of nonhomogeneous materials even when the materials contain interfaces. The influence of the discontinuity of the material properties (thermal expansion coefficient, thermal conductivity and Young’s modulus) on the TSIFs is investigated. The results show that the discontinuity of both thermal expansion coefficient and Young’s modulus affects the TSIFs greatly, while the discontinuity of thermal conductivity does not arouse obvious change of the TSIFs.  相似文献   

9.
The anti-plane fracture problem for a finite crack in a one-dimensional hexagonal quasicrystal strip is analyzed. By using Fourier transforms, the mixed boundary value problems are reduced to the dual integral equations. The solution of the dual integral equations is then expressed by the complete elliptic integrals of the first and the third kinds. The expressions for stress, strains, displacements and field intensity factors of the phonon and phason fields near the crack tip are obtained exactly. The path-independent integral derived by a conservation law equals the energy release rate, which can be used as a fracture criterion for a mode III fracture problem.  相似文献   

10.
In the paper, material conservation laws associated with a consistent second-order plate theory are derived, which takes shear deformations and strains in thickness direction of the plate into account. Three path-independent integrals are established. In the presence of inhomogeneities in the material (e.g., defects or cracks), energy-release rates due to the change of the configuration of such flaws can be calculated by these integrals. The resulting material forces may serve to assess the reliability of structures with cracks.  相似文献   

11.
Magneto-electro-elastic (MEE) materials usually consist of piezoelectric (PE) and piezomagnetic (PM) phases. Between different constituent phases, there exist lots of interfaces with discontinuous MEE properties. Complex interface distribution brings a great difficulty to the fracture analysis of MEE materials since the present fracture mechanics methods can hardly solve the fracture parameters efficiently of a crack surrounded by complex interfaces. This paper develops a new domain formulation of the interaction integral for the computation of the fracture parameters including stress intensity factors (SIFs), electric displacement intensity factor (EDIF) and magnetic induction intensity factor (MIIF) for linear MEE materials. The formulation derived here does not involve any derivatives of material properties and moreover, it can be proved that an arbitrary interface in the integral domain does not affect the validity and the value of the interaction integral. Namely, the interaction integral is domain-independent for material interfaces and thus, its application does not require material parameters to be continuous. Due to this advantage, the interaction integral becomes an effective approach for extracting the fracture parameters of MEE materials with complex interfaces. Combined with the extended finite element method (XFEM), the interaction integral is employed to solve several representative problems to verify its accuracy and domain-independence. Good results show the effectiveness of the present method in the fracture analysis of MEE materials with continuous and discontinuous properties. Finally, the particulate MEE composites composed of PE and PM phases are considered and four schemes of different property-homogenization level are proposed for comparing their effectiveness.  相似文献   

12.
Sanders showed in 1960, within the framework of two-dimensional elasticity, that in any body a certain integral I around a closed curve containing a crack is path-independent. I is equal to the rate of release of potential energy of the body with respect to crack length. Here we first derive, in a simple way, Sanders' integral I for a loaded elastic body undergoing finite deformations and containing an arbitrary void. The strain energy density need not be homogeneous nor isotropic and there may be body forces. In the absence of body forces, for flat continua, and for special forms of the strain energy density, it is shown that I reduces to the well-known vector and scalar path-independent integrals often denoted by J, L, and M.  相似文献   

13.
A numerical method using a path-independent H-integral based on the conservation integral was developed to analyze the singular stress field of a three-dimensional interfacial corner between anisotropic bimaterials under thermal stress. In the present method, the shape of the corner front is smooth. According to the theory of linear elasticity, asymptotic stress near the tip of a sharp interfacial corner is generally singular as a result of a mismatch of the materials’ elastic constants. The eigenvalues and the eigenfunctions are obtained using the Williams eigenfunction method, which depends on the anisotropic materials’ properties and the geometry of an interfacial corner. The order of the singularity related to the eigenvalue is real, complex or power-logarithmic. The amplitudes of the singular stress terms can be calculated using the H-integral. The stress and displacement around an interfacial corner for the H-integral are obtained using finite element analysis. In this study, a proposed definition of the stress intensity factors of an interfacial corner, which includes those of an interfacial crack and a homogeneous crack, is used to evaluate the singular stress fields. Asymptotic solutions of stress and displacement around an interfacial corner front are uniquely obtained using these stress intensity factors. To prove the accuracy of the present method, several different kinds of examples are shown such as interfacial corners or cracks in three-dimensional structures.  相似文献   

14.
A Modified version of the Dugdale-Bilby-Cottrell-Swinden (DBCS) model simulating the effect of plasticity at the tip of a crack in an infinite region was used by kfouri and rice (1978) to calculate the crack separation energy-rate GΔ corresponding to a finite crack growth step Δa during plane strain mode I crack extension. The loading consisted of a remote uniaxial tension σp applied normally to the plane of the crack. Using Rice's path-independent integral J to characterize the applied load in the crack tip region, and assuming the length R of the crack tip plastic zone to be small compared with the length of the crack, an analytical expression was derived relating the ratios (J/GΔ) and (2a/R) for small values of (2a/R). The analytical solution was incomplete in itself in that the value assumed in the plastic region of the DBCS model for the normal stress Y acting on the extending crack surfaces was the product of the yield stress in uniaxial tension σY and an unknown parameter C, the value of which depends on the effect of the local hydrostatic stresses in the case of plane strain conditions. The analytical solution was compared with a numerical solution obtained from a plane strain elastic-plastic finite element analysis on a centre-cracked plate (CCP) of material obeying the von Mises yield criterion. The value used for the yield stress was 310 MN/m2 and moderate isotropic linear hardening was applied with a tangent modulus of 4830 MN/m2. A uniaxial tension σp was applied on the two appropriate sides of the plate. The comparisons showed that the analytical and finite element solutions were mutually consistent and they enabled the value of C to be established at 1.91. In the present paper similar comparisons are made between the analytical solution and the finite element solutions for the CCP of the same material under different biaxial modes of loading. By assuming further that the form of the analytical solution does not depend on the details of the geometry and of the loading at remote boundaries, a comparison has also been made with the results of a finite element analysis on a compact tension specimen (CTS) made of the same material as the CCP. The different values of C obtained in each case are consistent with investigations by other authors on the effect of load biaxiality on crack tip plasticity.  相似文献   

15.
Piezoelectric materials and structures contain more or less electromechanical interfaces in engineering applications. It is difficult to obtain the fracture parameters efficiently of the piezoelectric materials with complex interfaces. This paper presents a domain-independent interaction integral for material nonhomogeneity and discontinuity which can be used for solving the stress intensity factors (SIFs) and the electric displacement intensity factor (EDIF) of piezoelectric materials with complex interfaces efficiently. The interaction integral is based on the J-integral by superimposition of two admissible states and the present formulation does not involve any derivatives of mechanical and electric properties. Moreover, it is proved that the interface in the integral domain does not affect the value of the interaction integral and thus, the present method does not require electromechanical parameters of piezoelectric materials to be continuous. The interaction integral method combined with the extended finite element method (XFEM) is used to investigate the influences of material continuity on the SIF and the EDIF and the results show that the material parameters and their first-order derivatives affect both the SIF and the EDIF greatly, while the higher-order derivatives affect both of them slightly.  相似文献   

16.
Conservation laws in linear elastodynamics   总被引:6,自引:0,他引:6  
Noether's theorem on variational principles invariant under a group of infinitesimal transformations is used to obtain a class of conservation laws associated with linear elastodynamics. These laws represent dynamical generalizations of certain path-independent integrals in elastostatics which have been of considerable recent interest. It is shown that the conservation laws obtained here are the only ones obtainable by Noether's theorem from invariance under a reasonably general group of infinitesimal transformations.  相似文献   

17.
A path-independent integral has been stated by Bui in the presence of a straight crack in a two-dimensional deformation field. Such an integral isdual to the Rice integral in the sense that it is based on the complementary stress energy density. Here we establish a boundary-independent integral in finite elasticity from which Bui's result follows as a particular case.
Sommario Un integrale indipendente dal cammino intorno al vertice di una frattura in un campo di deformazione bi-dimensionale è stato stabilito da Bui. Tale integrale èduale all'integrale di Rice, nel senso che si basa sulla densità di energia complementare o degli sforzi. Qui si propone un integrale invariante in un continuo tridimensionale soggetto a deformazioni finite. Si mostra che il risultato di Bui segue come caseo particolare.
  相似文献   

18.
This paper presents a pure complementary energy variational method for solving a general anti-plane shear problem in finite elasticity. Based on the canonical duality–triality theory developed by the author, the nonlinear/nonconvex partial differential equations for the large deformation problem are converted into an algebraic equation in dual space, which can, in principle, be solved to obtain a complete set of stress solutions. Therefore, a general analytical solution form of the deformation is obtained subjected to a compatibility condition. Applications are illustrated by examples with both convex and nonconvex stored strain energies governed by quadratic-exponential and power-law material models, respectively. Results show that the nonconvex variational problem could have multiple solutions at each material point, the complementary gap function and the triality theory can be used to identify both global and local extremal solutions, while the popular convexity conditions (including rank-one condition) provide mainly local minimal criteria and the Legendre–Hadamard condition (i.e., the so-called strong ellipticity condition) does not guarantee uniqueness of solutions. This paper demonstrates again that the pure complementary energy principle and the triality theory play important roles in finite deformation theory and nonconvex analysis.  相似文献   

19.
This paper considers the magnetoelectroelastic problem of a crack in a medium possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects. Based on the extended Stroh formalism, the general two-dimensional solutions to the magnetoelectroelastic problem are obtained, involving five analytic functions of different variables. The magnetoelectroelastic field around the crack tip is given. It contains five modes of square root singularities. Expressions of the stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived and the field intensity factors are provided. The path-independent conservative integral is derived. The energy release rate is written in terms of those field intensity factors. The explicit algebraic results are given for a special case of an anti-plane crack in a magnetoelectroelastic medium.  相似文献   

20.
求解多层弹性半空间轴对称问题的精确刚度矩阵法   总被引:6,自引:0,他引:6  
钟阳  张永山 《力学季刊》2003,24(3):395-400
本文首先从弹性力学的基本方程出发,利用Hankel积分变换等数学手段,推导出了单层弹性半空问轴对称问题的刚度矩阵,然后按传统的有限元方法组成总体刚度矩阵。通过求解由总体刚度矩阵所构成的代数方程和Hankel积分逆变换就可解出静荷载作用下多层弹性半空间轴对称问题的精确解。由于刚度矩阵的元素中不含有正指数项,计算时不会出现溢出的现象,从而克服了传递矩阵法的缺点。由于在推导过程中摒弃了应力函数的选择,使得问题的求解更加理论化和合理化,同时也为进一步研究这类问题如温度场,动力学等方向奠定了理论基础。最后,文中还给出了计算实例来证明推导结果的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号