首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the past decade, ionic-liquid-based Aqueous Biphasic Systems (ABS) have been the focus of a significant amount of research. Based on a compilation and analysis of the data hitherto reported, this critical review provides a judicious assessment of the available literature on the subject. We evaluate the quality of the data and establish the main drawbacks found in the literature. We discuss the main issues which govern the phase behaviour of ionic-liquid-based ABS, and we highlight future challenges to the field. In particular, the effect of the ionic liquid structure and the various types of salting-out agents (inorganic or organic salts, amino acids and carbohydrates) on the phase equilibria of ABS is discussed, as well as the influence of secondary parameters such as temperature and pH. More recent approaches using ionic liquids as additives or as replacements for common salts in polymer-based ABS are also presented and discussed to emphasize the expanding number of aqueous two-phase systems that can actually be obtained. Finally, we address two of the main applications of ionic liquid-based ABS: extraction of biomolecules and other added-value compounds, and their use as alternative approaches for removing and recovering ionic liquids from aqueous media.  相似文献   

2.
Catalytic reactions in two liquid phases containing ionic liquids (ILs), in which organic reactions proceed in the ILs phase and products are extracted to the other liquid phase, are efficient and environmentally benign. This short review briefly reports the development of catalytic application in biphasic systems containing ILs in the last two years. Recent progress for the functionalization of ILs themselves and combinations of homogeneous and heterogeneous catalysts with ILs are described. Prospects and future challenges are also addressed.  相似文献   

3.
Liquid–liquid equilibria data of the [Bmim]BF4 + fructose + water system were determined at 298.15, 308.15, 31815 K. It was found that the liquid–liquid equilibria can be formed over a wide component range and the effect of the temperature on the phase equilibria is obvious within the fructose concentration changing from 3 to 40%. The binodal curves were correlated using a five-parameter equation, and the tie lines were fitted the Othmer–Tobias and Bancroft correlations. Correlation coefficients for the equations exceeded 0.99.  相似文献   

4.
Hydrophilic ionic liquids can be salted-out and concentrated from aqueous solution upon addition of kosmotropic salts forming aqueous biphasic systems as illustrated by the phase behavior of mixtures of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and K3PO4.  相似文献   

5.
The ternary (liquid + liquid) equilibrium (LLE) data for mixtures of dodecane (C12H26) and ethanol with ionic liquids 1,3-dimethylimidazolium methylsulfate [Mmim][MeSO4], 1-ethyl-3-methylimidazolium methylsulfate, [Emim][MeSO4] and 1-butyl-3-methylimidazolium methylsulfate, [Bmim][MeSO4], were studied at T = 298.15 K and 0.101 MPa. The selectivity and solute distribution coefficient ratios determined from the data were used to examine the possibility of using these ionic liquids for extraction of ethanol from dodecane. The temperature dependency was investigated by measuring the LLE data for {dodecane + ethanol + [Mmim][MeSO4]} at T = 313.15 K and 0.101 MPa. The Othmer–Tobias and Hand equations were used to test the consistency of the tie-line data. The tie-line data were correlated with the Non-Random Two Liquid (NRTL) equation which provided a good model and representation for the experimental results.  相似文献   

6.
Imidazolium salts containing salicylaldoxime or salen ligands readily form ionic metal complexes with copper and manganese; hence offering applications in metal extractions and biphasic catalysis.  相似文献   

7.
1-n-Butyl-3-methylimidazolium hexafluorophosphate room-temperature ionic liquid is not only suitable as a medium for the preparation and stabilization of iridium nanoparticles but also ideal for the generation of recyclable biphasic catalytic systems for hydrogenation reactions. Thus, Ir(0) nanoparticles with a mean diameter of 2 nm have been prepared by reduction of Ir(I) dissolved in the ionic liquid with H2. This catalytic solution can be reused several times for the biphasic hydrogenation of olefins under mild reaction conditions.  相似文献   

8.
《Tetrahedron letters》2014,55(52):7181-7185
Solvolysis studies of pivaloyl triflate were performed using ionic liquid/methanol solvent mixtures. The rearranged carbocation intermediate reacts with methanol via nucleophilic attack or elimination of a proton. Relative amounts of products were determined through 1H NMR analysis. For most ionic liquids, increasing the ionic liquid:methanol ratio leads to increased yields of elimination product. Product ratios vary based on Kamlet–Taft solvatochromic parameters of hydrogen bond donating and accepting ability of the ionic liquid.  相似文献   

9.
We report a molecular dynamics study of the interface between water and (macroscopically) water-immiscible room-temperature ionic liquids "ILs", composed of PF6(-) anions and butyl- versus octyl-substituted methylimidazolium+ cations (noted BMI+ and OMI+). Because the parameters used to simulate the pure ILs were found to exaggerate the water/IL mixing, they have been modified by scaling down the atomic charges, leading to better agreement with the experiment. The comparison of [OMI][PF6] versus [BMI][PF6] ILs demonstrates the importance of the N-alkyl substituent on the extent of solvent mixing and on the nature of the interface. With the most hydrophobic [OMI][PF6] liquid, the "bulk" IL phase is dryer than with the [BMI][PF6] liquid. At the interface, the OMI+ cations retain direct contacts with the bulk IL, whereas the more hydrophilic PF6(-) anions gradually dilute in the local water micro-environment and are thus isolated from the "bulk" IL. The interfacial OMI+ cations are ordered with their imidazolium moiety pointing toward the aqueous side and their octyl chains toward the IL side of the interface. With the [BMI][PF6] liquid, the system gradually evolves from an IL-rich to a water-rich medium, leading to an ill-defined interfacial domain with high intersolvent mixing. As a result, the BMI+ cations are isotropically oriented "at the interface". Because the imidazolium cations are more hydrophobic than the PF6(-) anions, the charge distribution at the interface is heterogeneous, leading to a positive electrostatic potential at the interface with the two studied ILs. Mixing-demixing simulations on [BMI][PF6]/water mixtures are also reported, comparing Ewald versus reaction field treatments of electrostatics. Phase separation is very slow (at least 30 ns), in marked contrast with mixtures involving classical organic liquids, which separate in less than 0.5 ns at the microscopic level. The results allow us to better understand the specificity of the aqueous interfaces with hydrophobic ionic liquids, compared with classical organic solvents, which has important implications as far as the mechanism of liquid-liquid ion extraction is concerned.  相似文献   

10.
New polyethylene glycol (PEG)/ionic liquid aqueous biphasic systems (ABS) are presented. Distinct pairs of PEG polymers and ionic liquids can induce phase separation in aqueous media when dissolved at appropriate concentrations. Phase diagrams have been determined for a large array of systems at 298, 308 and 323 K. A comparison of the binodal curves allowed the analysis of the tunable structural features of the ionic liquid (i.e., anionic nature, cationic core, cationic alkyl side chain length and functionalisation, and number of alkyl substituents in the cation) and the influence of the molecular weight of the PEG polymer on the ability of these solutes to induce an ABS. It was observed that contrary to typical ABS based on ionic liquids and inorganic salts, in which the phase behaviour is dominated by the formation of the hydration complexes of the ions, the interactions between the PEG polymers and ionic liquids control the phase demixing in the polymer-type ABS studied herein. It is shown that both the ionic liquids and PEG polymers can act as the salting-out species; that is, it is an occurrence that is dependent on the structural features of the ionic liquid. For the first time, PEG/ionic liquid ABS are reported and insight into the major interactions that govern the polymer/ionic liquid phase behaviour in aqueous media are provided. The use of two different nonvolatile and tunable species (i.e., ionic liquids and PEG polymers) to form ABS allows the polarities of the phases to be tailored. Hence, the development of environmentally friendly separation processes that make use of these novel systems is envisaged.  相似文献   

11.
Guanidinium-based ionic liquids   总被引:4,自引:0,他引:4  
Cyclic (subset=N+<, subset = imidazolidine 3 and 4, hexahydro-pyrimidine 7 and 8, tetrahydro-1,3,5-oxadiazine 12, and triazoline 15 and 16) and acyclic [(R2N)2C=N+<, 19] guanidinium-based salts were synthesized via the quaternization of guanidine derivatives with nitric or perchloric acid or with iodomethane followed by metathesis reaction with silver nitrate, silver perchlorate, or ammonium dinitroamide. The structure of 15d was confirmed by single-crystal X-ray analysis. Most of the salts exhibited low melting points and good thermal stabilities. Their densities range between 1.2 and 1.5 g/cm3. Standard molar enthalpies of formation were calculated from experimentally determined constant-volume combustion energies obtained using an oxygen bomb calorimeter.  相似文献   

12.
The alkylation reaction of 2-mercapto-1-methylimidazole 1a with iodoethane and chlorobutane produced S-alkylmethimazole halides 2a and 2b which were subjected to anion metathesis with two different metal salts (MA) to afford methimazole-based room-temperature ionic liquids 3a, 3b, and 3c in 82%, 85%, and 87% yields, respectively. S-Alkylation giving 2a and 2b suggests that methimazole reacts through the thione tautomer.  相似文献   

13.
Ionic liquids are salts that are liquid at or near room temperature. Their wide liquid range, good thermal stability, and very low vapor pressure make them attractive for numerous applications. The general approach to creating ionic liquids is to employ a large, unreactive, low symmetry cation with and an anion that largely controls the physical and chemical properties. The most common cations used in ionic liquids are N-alkylpyridinium and N,N′-dialkylimidazolium. Another very effective cation for the creation of ionic liquids is tetraalkylphosphonium, [PR1R2R3R4]+. The alkyl groups, Rn, generally are large and not all the same. The halide salts of several phosphonium cations are available as starting materials for metathesis reactions used to prepare ionic liquids. The large phosphonium cations can combine with relatively large anions to make viscous but free flowing liquids with formula mass greater than 1000 g mol−1. Some other more massive salts are waxes and glasses. The synthesis and the physical, chemical, and optical properties of phosphonium-ionic liquids having anions with a wide range of masses were measured and are reported here.  相似文献   

14.
A total of sixty-three choline derivative-based ionic liquids in the forms of chlorides, acesulfamates, and bis(trifluoromethylsulfonyl)imides have been prepared and their physical properties (density, viscosity, solubility, and thermal stability) have been determined. Thirteen of these salts are known chlorides: precursors to the 26 water-soluble acesulfamates, 12 acesulfamates only partially miscible with water, and 12 water-insoluble imides. The crystal structures for two of the chloride salts-(2-hydroxyethyl)dimethylundecyloxymethylammonium chloride and cyclododecyloxymethyl(2-hydroxyethyl)dimethylammonium chloride-were determined. The antimicrobial (cocci, rods, and fungi) activities of the new hydrophilic acesulfamate-based ILs were measured and 12 were found to be active. The alkoxymethyl(2-hydroxyethyl)dimethylammonium acesulfamates have been shown to be insect feeding deterrents and thus open up a new generation of synthetic deterrents based on ionic liquids. The alkoxymethyl(2-decanoyloxyethyl)dimethylammonium bis(trifluoromethylsulfonyl)imides have also been shown to act as fixatives for soft tissues and can furthermore be used as substitutes for formalin and also preservatives for blood.  相似文献   

15.
16.
Radical intermediates generated in radiolysis and photoionization of ionic liquids (ILs) composed of ammonium, phosphonium, pyrrolidinium, and imidazolium cations and bis(triflyl)amide, dicyanamide, and bis(oxalato)borate anions have been studied using magnetic resonance spectroscopy. Large yields of terminal and penultimate C-centered radicals are observed in the aliphatic chains of the phosphonium, ammonium, and pyrrolidinium cations, but not for imidazolium cation. This pattern is indicative of efficient deprotonation of a hole trapped on the parent cation (the radical dication) that competes with rapid electron transfer from a nearby anion. This charge transfer leads to the formation of stable N- or O-centered radicals; the dissociation of parent anions is a minor pathway. Addition of 10-40 wt % of trialkyl phosphate (a common extraction agent) has relatively little effect on the fragmentation of the ILs. The yield of the alkyl radical fragment generated by dissociative electron attachment to the trialkyl phosphate is <4% of the yield of the radical fragments derived from the IL solvent. The import of these observations for radiation stability of the prospective nuclear cycle extraction systems based upon the ILs is discussed.  相似文献   

17.
18.
[reaction: see text] The complex {[HC(3,5-Me(2)pz)(3)]Cu(NCMe)}BF(4) catalyzes the transfer of the :CHCO(2)Et unit from ethyl diazoacetate to several saturated and unsaturated substrates with very high yields and under biphasic conditions using the ionic liquid [bmim][PF(6)] and hexane as the reaction medium. The catalyst has been tested for several cycles of recovery and reuse without any loss of activity.  相似文献   

19.
Ha SH  Mai NL  Koo YM 《Journal of chromatography. A》2010,1217(49):7638-7641
Microwave-assisted separation has been applied to recover ionic liquid (IL) from its aqueous solution as an efficient method with respect to time and energy compared to the conventional vacuum distillation. Hydrophilic ILs such as 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-ethyl-3-methylimidazolium methylsulfate ([Emim][MS]) could be recovered in 6 min from the mixture of ILs and water (1:1, w/w) under microwave irradiation at constant power of 10 W while it took at least 240 min to obtain ILs containing same water content (less than 0.5 wt%) by conventional vacuum oven at 363.15 K with 90 kPa of vacuum pressure. Energy consumptions per gram of evaporated water from the homogeneous mixture of hydrophilic ILs and water (1:1, w/w) by microwave-assisted separation were at least 52 times more efficient than those in conventional vacuum oven. It demonstrated that microwave-assisted separation could be used for complete recovery of ILs in sense of time and energy as well as relevant purity.  相似文献   

20.
The effect on the melting point of the introduction of asymmetry in tetraalkylammonium halide salts has been investigated leading to the synthesis of new, hydrophobic (room temperature) ionic liquids suitable for liquid/liquid electrochemistry; one of these, tri(hexyl)decylammonium tetrakis(pentafluorophenyl)borate, displays the largest electrochemical window observed to date for a biphasic room temperature ionic liquid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号