首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In the present study the solubilities of two antifungal drugs of ketoconazole and clotrimazole in supercritical carbon dioxide were measured using a simple static method. The experimental data were measured at (308 to 348) K, over the pressure range of (12.2 to 35.5) MPa. The mole fraction solubilities ranged from 0.2 · 10?6 to 17.45 · 10?5. In this study five density based models were used to calculate the solubility of drugs in supercritical carbon dioxide. The density based models are Chrastil, modified Chrastil, Bartle, modified Bartle and Mendez-Santiago and Teja (M–T). Interaction parameters for the studied models were obtained and the percentage of average absolute relative deviation (AARD%) in each calculation was displayed. The correlation results showed good agreement with the experimental data. A comparison among the five models revealed that the Bartle and its modified models gave much better correlations of the solubility data with an average absolute relative deviation (AARD%) ranging from 4.8% to 6.2% and from 4.5% to 6.3% for ketoconazole and clotrimazole, respectively. Using the correlation results, the heat of drug–CO2 solvation and that of drug vaporization was separately approximated in the range of (?22.1 to ?26.4 and 88.3 to 125.9) kJ · mol?1.  相似文献   

2.
Bis(methoxy oxalic)-1,2-haxenediester and bis(ethoxy oxalic)-1,2-haxenediester were synthesized by modifying the end groups of 1,2-hexanediol with methyl oxalyl chloride and ethyl oxalyl monochloride. The solubilities of all three compounds in supercritical carbon dioxide were determined at different conditions of pressures (8.8 to 18.8) MPa and temperatures (313, 333, and 353) K. Then, the solubility data were correlated with the Bartle model and the Chrastil model. The average absolute relative deviation (AARD) for the Bartle model was in the range of (3.89 to 25.46)% which is within a good approximation. The Chrastil model also showed satisfactory agreement and the AARD was in the range of (3.70 to 16.92)%. Furthermore, the partial molar volumes of those compounds were estimated following the theory developed by Kumar and Johnston.  相似文献   

3.
The solubility of newly synthesized chelating agents, i.e., tetraethylene glycol bis (2-ethylhexyl) dimethyl diphosphate (EG4EH), tetraethylene glycol bis (n-octyl) dimethyl diphosphate (EG4Oct), and tetraethylene glycol bis (2-butoxyethyl) dimethyl diphosphate (EG4BOE) in supercritical carbon dioxide (scCO2) were determined at temperatures ranging from (318.15 to 333.15) K and pressures ranging from (12 to 21) MPa. Solubility increases in the order of EG4Oct (MW = 606.33) < EG4BOE (MW = 582.26) < EG4EH (MW = 606.33), indicating that branched side chains of the ligands play an important part in increasing solubility in scCO2. Semi empirical density-based models proposed by Bartle and Chrastil were used to correlate the experimental data, and AARD values were calculated to be (1.2 to 2.9)% and (0.40 to 0.93)% for Bartle and Chrastil model, respectively. Additionally, the partial molar volumes of those compounds were estimated following the theory developed by Kumar and Johnston.  相似文献   

4.
A static method based on capacitance gauges was used to measure the vapor pressures of the condensed phases of the methyl esters of the three aminobenzoic acids. For methyl o-aminobenzoate the vapor pressures of the liquid phase were measured in the range (285.4 to 369.5) K. For the meta and para isomers vapor pressures of both crystalline and liquid phases were measured in the ranges (308.9 to 376.6) K, and (332.9 to 428.0) K, respectively. Vapor pressures of the latter compound were also measured using the Knudsen effusion method in the temperature range (319.1 to 341.2) K.From the dependence of the vapor pressures on the temperature, the standard molar enthalpies and entropies of sublimation and of vaporization were derived. Differential scanning calorimetry was used to measure the temperatures and molar enthalpies of fusion of the three isomers. The results enabled the estimation of the enthalpy of the intermolecular (N−HO) hydrogen bond in the crystalline methyl p-aminobenzoate. A correlation relating the temperature of fusion and the enthalpy and Gibbs energy of sublimation of benzene, methyl benzoates and benzoic acids was derived.  相似文献   

5.
Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H2N–(CH2)n–NH2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat’s indices has been found, proving the internal consistency of the measured data.  相似文献   

6.
《Fluid Phase Equilibria》2005,238(1):120-128
The measurement and correlation of the experimental solubility of a spiroindolinonaphthoxazine photochromic dye (1,3-dihydro-3,3-dimethyl-1-isopropyl-6′-(2,3)-(dihydroindole-1-yl)spiro[2H-indole-2,3′-3H-naphtho[2,1-b] [1,4] oxazine]) in supercritical carbon dioxide (scCO2) is reported. Results were obtained using a static analytical method, at 308.0, 318.0 and 328.0 K, and in a pressure range from 10.0 to 26.0 MPa. Solubility experimental data were correlated with three density-based models (Chrastil, Bartle and Méndez-Santiago–Teja models), with the Ziger–Eckert semi-empirical correlation and with two cubic equation-of-state (EOS) models, namely the Peng–Robinson EOS (PR-EOS) and the Soave–Redlich–Kwong EOS (SRK-EOS), together with the conventional van der Waals mixing and combining rules. Good correlation results were obtained between the calculated and experimental solubility, to all fitted models. Solubility results clearly indicate the feasibility of processing this dye, and possibly this class of photochromic dyes, using supercritical fluid technologies and processes, for example, supercritical fluid dye impregnation of polymer host materials.  相似文献   

7.
Recommended vapor pressures of solid benzene (CAS Registry Number: 71-43-2) which are consistent with thermodynamically related crystalline and ideal-gas heat capacities as well as with properties of the liquid phase at the triple point temperature (vapor pressure, enthalpy of vaporization) were established. The recommended data were developed by a multi-property simultaneous correlation of vapor pressures and related thermal data. Vapor pressures measured in this work using the static method in the temperature range from 233 K to 260 K, covering pressure range from 99 Pa to 1230 Pa, were included in the simultaneous correlation. The enthalpy of sublimation was established with uncertainty significantly lower than the previously recommended values.  相似文献   

8.
The standard massic energies of compounds of 4-tert-butylbiphenyl and 4,4′-di-tert-butylbiphenyl were measured at T = 298.15 K by static-bomb combustion calorimetry. The standard enthalpies of vaporization, fusion and sublimation were measured in a Calvet microcalorimeter, or by differential scanning calorimetry. The standard molar enthalpies of formation in the condensed and gaseous states were obtained from these data. The tert-butyl group increments for the substitution of one hydrogen atom in a position “4” in biphenyl molecule were calculated.  相似文献   

9.
Knowledge of vapor pressures of high molar mass organics is essential to predicting their behavior in combustion systems as well as their fate and transport within the environment. This study involved polycyclic aromatic compounds (PACs) containing halogen hetero-atoms, including bromine and chlorine. The vapor pressures of eight PACs, ranging in molar mass from (212 to 336) g · mol?1, were measured using the isothermal Knudsen effusion technique over the temperature range of (296 to 408) K. These compounds included those with few or no data available in the literature, namely: 1,4-dibromonaphthalene, 5-bromoacenaphthene, 9-bromoanthracene, 1,5-dibromoanthracene, 9,10-dibromoanthracene, 2-chloroanthracene, 9,10-dichloroanthracene, and 1-bromopyrene. Enthalpies of sublimation of these compounds were determined via application of the Clausius–Clapeyron equation. An analysis is presented on the effects of the addition of halogen hetero-atoms to pure polycyclic aromatic hydrocarbons using these data as well as available literature data. As expected, the addition of halogens onto these PACs increases their enthalpies of sublimation and decreases their vapor pressures as compared to the parent compounds.  相似文献   

10.
The heat capacity of levoglucosan was measured over the temperature range (5 to 370) K by adiabatic calorimetry. The temperatures and enthalpies of a solid-phase transition and fusion for the compound were found by DSC. The obtained results allowed us to calculate thermodynamic properties of crystalline levoglucosan in the temperature range (0 to 384) K. The enthalpy of sublimation for the low-temperature crystal phase was found from the temperature-dependent saturated vapor pressures determined by the Knudsen effusion method. The thermodynamic properties of gaseous levoglucosan were calculated by methods of statistical thermodynamics using the molecular parameters from quantum chemical calculations. The enthalpy of formation of the crystalline compound was found from the experiments in a combustion calorimeter. The gas-phase enthalpy of formation was also obtained at the G4 level of theory. The thermodynamic analysis of equilibria of levoglucosan formation from cellulose, starch, and glucose was conducted.  相似文献   

11.
The supercritical technology has been considered as an appropriate alternative for separation of biomaterials from cosmetic, food, and pharmaceutical products. The solid solubility of biological compounds is the most important thermodynamic parameter in the supercritical extraction and purification. The equilibrium solubility of two biocides, climbazole, and triclocarban was measured in supercritical carbon dioxide with static method in the pressure range from (10 to 40) MPa and at temperatures equal to (313.2, 323.2, and 333.2) K. The experimental data were correlated by Peng–Robinson equation of state and quasi-chemical nonrandom lattice fluid model.  相似文献   

12.
Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems.  相似文献   

13.
Molar enthalpies of vaporization of secondary C7–C9 alkanols were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. The measured data sets were checked for internal consistency successfully. A large number of the primary experimental results on temperature dependences of vapour pressures of secondary alcohols have been collected from the literature and have been treated uniform in order to derive their vaporization enthalpies at the reference temperature 298.15 K. This collection, together with our experimental results, have helped to ascertain the database for branched aliphatic alcohols.  相似文献   

14.
15.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of two crystalline ruthenium complexes: tris(1,1,1-trifluoro-2,4-pentanedionate)ruthenium(III) {Ru(tfacac)3}, between T =  350.20 K and T =  369.17 K and tris(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)ruthenium(III) {Ru(hfacac)3} between T =  299.15 K and T =  313.14 K. From the temperature dependence of the vapour pressure of the crystalline compounds, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. By using an estimated value for the heat capacity differences between the gas and the crystal phases the standard, po =  105Pa, molar enthalpies, entropies, and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

16.
《Fluid Phase Equilibria》2004,218(2):165-175
Vapor–liquid equilibria (VLE) of binary mixtures containing the high boiling solutes: nonan-1-al, 4-methyl-benzaldehyde, nonan-2-one, and 4-phenylbutan-2-one and the ionic liquid (IL) [EMIM][NTf2] were studied by using the transpiration method. VLE measurements were carried out over the whole concentration range at different temperatures between 298 and 323 K. Activity coefficients γi of these solvents in the ionic liquid have been determined from these data using the NRTL-equation. In addition vapor pressures of the pure solutes 4-methyl-benzaldehyde, nonan-2-one and 4-phenylbutan-2-one have been measured as function of temperature and their enthalpies of vaporization have been obtained.  相似文献   

17.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of 4-chloro-3-nitroaniline and 5-chloro-2-nitroaniline, in the condensed phase, were derived from their standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and HCl · 600H2O(l), measured by rotating bomb combustion calorimetry. From the temperature dependence of the vapour pressures of these compounds, measured by the Knudsen effusion technique, their standard molar enthalpies of sublimation, at T = 298.15 K, were derived by means of the Clausius–Clapeyron equation. The Calvet microcalorimetry was also used to measure the standard molar enthalpies of sublimation of these compounds, at T = 298.15 K. The combination of the standard molar enthalpies of formation in the condensed phases and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation in the gaseous phase at T = 298.15 K for each isomer. Further, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were also derived.The standard molar enthalpies of formation, in the gaseous phase of all the chloronitroaniline isomers were also estimated by the Cox scheme and by the use of computational thermochemistry and compared with the available experimental values.  相似文献   

18.
《Fluid Phase Equilibria》2006,242(2):154-163
Phase equilibria, for the binary systems {n-alkanes (tridecane, octadecane, or eicosane), or cyclohexane, or 1-alkanol (1-hexadecanol, or 1-octadecanol, or 1-eicosanol) + 2,3-pentanedione} have been determined using a cryometric dynamic method at atmospheric pressure. The influence of pressure on liquidus curve up to 800 MPa was determined for (tridecane, or cyclohexane + 2,3-pentanedione) systems. A thermostated apparatus for the measurements of transition pressures from the liquid to the solid state in two component isothermal solutions (pressometry) was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high-pressure experimental results obtained at isothermal conditions (px) were interpolated to well known Tx diagrams.Immiscibility in the liquid phase was observed only for the n-alkanes mixtures. The solubility decreases with an increase of the number of carbon atoms in the n-alkane, or 1-alkanol chain. The higher intermolecular solute–solvent interaction was observed for the 1-alkanols.Experimental solubility results are compared with values calculated by means of the NRTL equation (n-alkanes) and the NRTL and UNIQUAC ASM equations utilizing parameters derived from SLE and LLE results. The existence of a solid–solid first-order phase transition in tridecane, eicosane and 1-alkanols has been taken into consideration in the calculations. The correlation of the solubility data has been obtained with the average root-mean-square deviation of temperature σ < 1.0 K with both equations. The pressure–temperature–composition relation of the high-pressure (solid + liquid) phase equilibria, was satisfactorily presented by the polynomial.  相似文献   

19.
The vapor pressures of crystalline and liquid phases of methyl p-hydroxybenzoate and of methyl p-methoxybenzoate were measured over the temperature ranges (338.9 to 423.7) K and (292.0 to 355.7) K respectively, using a static method based on diaphragm capacitance gauges. The vapor pressures of the crystalline phase of the former compound were also measured in the temperature range (323.1 to 345.2) K using a Knudsen mass-loss effusion technique. The results enabled the determination of the standard molar enthalpies, entropies and Gibbs free energies of sublimation and of vaporization, at T = 298.15 K, as well as phase diagram representations of the (p, T) experimental data, including the triple point. The temperatures and molar enthalpies of fusion of both compounds were determined using differential scanning calorimetry and were compared with the results indirectly derived from the vapor pressure measurements. The standard (p° = 105 Pa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental results, the standard molar enthalpies of formation, in the gaseous phase at T = 298.15 K, were calculated and compared with the values estimated by employing quantum chemical computational calculations. A good agreement between experimental and theoretical results is observed. To analyze the thermodynamic stability of the two compounds studied, the standard Gibbs free energies of formation in crystalline and gaseous phases were undertaken. The standard molar enthalpies of formation of the title compounds were also estimated from two different computational approaches using density functional theory-based B3LYP and the multilevel G3 methodologies.  相似文献   

20.
Solution and solvation enthalpies at infinite dilution of 1-bromoadamantane, 1-adamantanol, and 2-adamantanone are reported at 298.15 K in a set of 14 aprotic solvents. The specific interaction enthalpies of the solid solutes are calculated using a methodology recently published by other authors. 1-Adamantanol’s specific interaction enthalpies show a good correlation with the Kamlet–Taft β scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号