首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a novel approach to generate quadrupling-frequency optical millimeter-wave using a dual-drive Mach–Zehnder modulator (MZM) in radio-over-fiber system. By properly adjusting the phase difference in the two modulation arms of MZM, the direct current (DC) bias, the modulation index and the gain of base-band signal, the quadrupling-frequency optical millimeter-wave with signal only carried by one second-order sideband is generated. As the signal is transmitted along the fiber, there is no time shift of the codes caused by chromatic dispersion. Theoretical analysis and simulation results show that the eye diagram keeps open and clear even when the quadrupling-frequency optical millimeter-wave are transmitted over 110 km and the power penalty is about 0.45 dB after fiber transmission distance of 60 km. Furthermore, due to another second-order sideband carrying no signals, a full duplex radio-over-fiber link based on wavelength reuse is also built to simplify the base station. The bidirectional 2.5 Gbit/s data is successfully transmitted over 40 km standard single mode fiber with less than 0.6 dB power penalty in the simulation.  相似文献   

2.
Abstract

A novel photonic mm-wave frequency sextupling scheme based on an integrated Mach–Zehnder modulator with three arms is proposed in this article. Without any optical filter, a high-quality frequency sextupling mm-wave signal can be generated. Compared with mm-wave generation schemes based on traditional two-arm Mach–Zehnder modulators, the proposed scheme does not need DC bias and a complex electrical bias control circuit. Some non-ideal factors are taken into consideration to verify its performance, which proves that a slight deviation of the ideal values does not cause great degradation of the performance of the mm-wave generation scheme.  相似文献   

3.
A frequency sextupling technique for the generation of millimeter-wave (mm-wave) is proposed and investigated. The proposed technique is comprised of two cascaded dual-electrode Mach–Zehnder modulators (MZMs), which are interleaved with Gaussian optical band-pass filter (GOBF). The first MZM, biased at minimum transmission, is only used for optical carrier suppression modulation, and the second MZM, biased at maximum transmission, is used for both even-order optical harmonic generation and data signal modulation. The GOBF between two MZMs is used to suppress the high-order optical harmonics beyond the first-order optical harmonics. On the basis of theoretical analysis and simulated demonstrations, it is concluded that with the use of an RF signal at 10 GHz, which carries the data signal and drives the MZMs, an mm-wave signal at 60 GHz can be obtained. The simulation results show that the proposed sextuple leads to a 7 dB improvement in receiver sensitivity in comparison with the modulation technique, i.e. using two cascaded dual-electrode MZMs without GOBF. Furthermore, the eye diagrams show that the quality of generated mm-wave signal is satisfactory. The proposed technique is verified by experiments.  相似文献   

4.
Wenke Yu  Li Huo  Dan Lu  Caiyun Lou 《Optics Communications》2012,285(21-22):4302-4306
We propose a novel and simple scheme to achieve NRZ-to-RZ format conversion and simultaneous wavelength multicasting based on a single-stage dual-arm electro-optic Mach–Zehnder modulator (MZM) and a short single mode fiber (SMF). The format conversion and wavelength multicast process are achieved by chirp compensation under the condition of generation of optical flat frequency comb. 40 Gb/s NRZ-to-RZ conversion with one-to-five multiple-wavelength channel multicasting and transmission of the NRZ and the converted signals over 200 km dispersion-managed fiber-link are successfully demonstrated by numerical simulation. Research results show that 40 Gb/s 2 ps RZ signal with wavelength-preserving can be obtained after format conversion. The converted RZ signal presents good transmission performance and can easily be multiplexed to 160 Gb/s using optical time division multiplexing (OTDM) technology. All the multicast channels can be error free after 50 km transmission. Besides, the conversion operation can also greatly reduce the timing jitter of the degraded NRZ signal due to the retiming function of the proposed scheme.  相似文献   

5.
In this Letter, we reported the preliminary results of an integrating periodically capacitive-loaded traveling wave electrode(CL-TWE) Mach–Zehnder modulator(MZM) based on InP-based multiple quantum well(MQW)optical waveguides. The device configuration mainly includes an optical Mach–Zehnder interferometer, a direct current electrode, two phase electrodes, and a CL-TWE consisting of a U electrode and an I electrode. The modulator was fabricated on a 3 in. InP epitaxial wafer by standard photolithography, inductively coupled plasma dry etching, wet etching, electroplating, etc. Measurement results show that the MZM exhibits a3 dB electro-optic bandwidth of about 31 GHz, a V_π of 3 V, and an extinction ratio of about 20 dB.  相似文献   

6.
We propose and experimentally demonstrate an ultra-flat optical frequency comb(OFC) generator by a balanced driven dual parallel Mach–Zehnder modulator. Five- and seven-tone OFC with exactly equal intensity can be generated theoretically. Experimentally obtained five- and seven-tone OFC with flatness of 0.6 and 1.26 d B are demonstrated, respectively, which agrees well with the theoretical results.  相似文献   

7.
We propose an asymmetrical Mach–Zehnder interferometer (MZI) for efficient pulse generation and compression using porous silicon (PS) waveguide, fibre delay line and couplers. We show a pulse compression of about 0.4 ns at the output port with third-order super-Gaussian input pulse in ~2 ns time duration and ~40.3 W peak power level. Also, we show the possibility of obtaining compressed single- or double-pulse with judicious choice of various parameters like input peak power, delay time and input pulse width.  相似文献   

8.
A monolithically integrated and fully packaged Mach–Zehnder interferometer with semiconductor optical amplifiers (MZI-SOA) is demonstrated as polarisation-independent high-speed demultiplexer for up to 160 Gbit/s optical time division multiplexed (OTDM) data streams.  相似文献   

9.
We propose a method to implement a Mach-Zehnder interferometry based upon a string of trapped ions with artificial nonlinear interactions. By manipulating the coupling strength between two involved internal states of the ions, we could achieve the beam splitting/recombination with NOON states. Using current techniques for manipulating trapped ions, we discuss the experimental feasibility of our scheme and analyze some undesired uncertainty under realistic experimental environment.  相似文献   

10.
We proposed a scheme based on two cascaded lithium niobate intensity modulators to generate an optical frequency comb with very high flatness. Single-drive multi-RF waveforms are used for driving the first intensity modulator, and 9 lines within 1 dB power variation can be obtained. When cascading with another intensity modulator, by specially adjusting the DC bias and the drive amplitudes of the RF signals of the two intensity modulators, 27 or 45 comb lines with a spectral power variation about 1 dB are obtained. The scheme is relatively simple and adjustable, and the frequency interval of the OFC varies with microwave frequency applied on modulators.  相似文献   

11.
This Letter theoretically and experimentally studies the response of photonic switching in a channel-interleaved photonic analog-to-digital converter(PADC) with high sampling rate and wide input frequency range. A figure of merit(FoM) is introduced to evaluate the switching response of the PADC when a dual-output Mach–Zehnder modulator(MZM) serves as the photonic switch to parallelize the sampled pulse train into two channels. After the optimization of the FoM and utilization of the channel-mismatch compensation algorithm,the system bandwidth of PADC is expanded and the signal-to-distortion ratio is enhanced.  相似文献   

12.
We propose and analyze a high effective Q-factor triangular ring resonator (TRR) coupled with an asymmetric Mach–Zehnder interferometer (AMZI), in which the long evanescent fields on a total internal reflection (TIR) mirror in the TRR and the field cancelation by the phase difference of each path in the AMZI are utilized. The TRR is employed in order to more effectively measure the quantities that occur during biological events because the evanescent field of the TIR mirror with its sharp incident angle is influenced by the Goos–Hänchen shift. In this paper, we report upon the AMZI-coupled TRR sensor structure with the high effective Q-factor of about 105 obtained through the optimization of the AMZI path-length. The sensitivity of the resonance shift when changing the refractive index of 1 × 10? 4 at the incidence angle of 22.92° has been identified to be as high as 0.48 × 104 nm/RIU. In addition, the power sensitivity of the AMZI-coupled TRR with a 17 dB attenuation is 5.7 × 105 dB/RIU.  相似文献   

13.
《Current Applied Physics》2014,14(7):954-959
We report the design and fabrication of an integrated Mach–Zehnder interferometric (MZI) biochip based on silicon oxynitride layers deposited with a plasma-enhanced chemical vapor deposition (PECVD) process. A rib waveguide for an integrated MZI sensor has been designed to have a high surface sensitivity and a single-mode behavior by using an effective index method. The integrated MZI chip operating at 637 nm is fabricated via conventional photolithography and reactive ion etching. As a biosensor application, the real-time and label-free detection of the covalent immobilization and hybridization of DNA strands is performed and verified with this device.  相似文献   

14.
15.
A Fourier analysis applied to the Mach–Zehnder interferometer(MZI) transmission spectrum for simultaneous refractive index(RI) and temperature measurements is proposed and experimentally demonstrated in this Letter. In the fast Fourier transform(FFT) spectrum of the MZI transmission spectrum, several frequency components are generally observed, which means that the transmission spectrum of the MZI is formed by the superposition of some dual-mode interference(DMI) spectra, and each frequency component represents different core-cladding interferences. We can select some dominant frequency components in the FFT spectrum of the MZI transmission spectrum to take the inverse FFT(IFFT). Then, the corresponding DMI patterns can be obtained. Due to the shift of the wavelength of these DMI spectra with changes in the environmental parameters,we can use the coefficient matrix of these DMI spectra for multi-parameter sensing. In this Letter, two DMI patterns are separated from the resultant transmission spectrum of the MZI. As the RI and temperature change,the shifts of the two DMI patterns with respect to the RI and temperature will be observed. The sensitivities of the RI and temperature are-137.1806 nm∕RIU(RI unit) and 0.0860 nm∕°C, and-22.9955 nm∕RIU and0.0610 nm∕°C for the two DMIs. Accordingly, it can be used to simultaneously measure RI and temperature changes. The approach can eliminate the influence of multiple interferences and improve the accuracy of the sensor.  相似文献   

16.
于旭东  李卫  朱诗尧  张靖 《中国物理 B》2016,25(2):20304-020304
We study a scheme for Mach-Zehnder(MZ) interferometer as a quantum linear device by injecting two-mode squeezed input states into two ports of interferometer.Two-mode squeezed states can be changed into two types of inputs for MZ interferometer:two squeezed states and Einstein-Podolsky-Rosen(EPR) entangled states.The interference patterns of the MZ interferometer vary periodically as the relative phase of the two arms of the interferometer is scanned,and are measured by the balanced homodyne detection system.Our experiments show that there are different interference patterns and periodicity of the output quantum states for two cases which depend on the relative phase of input optical fields.Since MZ interferometer can be used to realize some quantum operations,this work will have the important applications in quantum information and metrology.  相似文献   

17.
We propose and demonstrate a fiber in-line Mach–Zehnder interferometer using thin-core fibers. This in-line interferometer is composed of a short section of thin-core fiber inserted between two single mode fibers (SMF), and demonstrated as a strain and temperature sensor in this study. A strain sensitivity of ?1.83 pm/με with a measurement range of 0?2000 με, and the temperature sensitivity of ?72.89 pm/°C with a temperature variation of 50 °C are achieved. We also discussed that the influence of strain and temperature change on the relative power ratios among the excited cladding modes in thin-core fibers.  相似文献   

18.
We present comparative measurements of two Mach–Zehnder interferometers, one with Y-junction couplers and the other with MMI couplers, both developed in silicon-on-insulator technology and using plasma dispersion effect for light phase modulation. Measurements of fiber-to-fiber losses, absorption coefficient, output intensity vs. time and extinction ratio vs. frequency have been performed at λ=1.3 μm and at λ=1.55 μm. Results are reported and discussed in this paper. Received: 18 May 2001 / Revised version: 24 September2001 / Published online: 30 October 2001  相似文献   

19.
We report the formation of doughnut-shaped focal intensity distributions with hole diameters of /3.3=232 nm full-width-at-half-maximum. The doughnut shape is created by illuminating a high-numerical-aperture lens with the output of a Mach–Zehnder interferometer, in which half of the wavefront in each arm is phase retarded by . The focal intensities are probed with a point-like scatterer and compared with the predictions of a vectorial focusing theory. The orientation of the phase-discontinuity line with respect to the electric field determines whether a strong longitudinal or a vanishing electric field is produced at the focal point. Conditions are given for creating high-contrast focal holes at the sub-micron scale. PACS 42.25.-p; 42.30.-d; 42.79.-e  相似文献   

20.
A novel refractometer based on tapered Mach–Zehnder modal interferometer (MZI) is proposed and experimentally demonstrated. This sensor is composed of a pair of Peanut-Shape structures and an embedded taper – the former excites high-order cladding modes, while the latter enhances the evanescent field. As the effective refractive index (RI) of cladding is based on the changes of surrounding RI, thus extinction ratio will change due to the alteration of the distribution of power in the fiber which is induced by various differences of core and cladding for RI. As a result, the maximum RI sensitivity of 240.78 extinction ratio/RIU (refractive index unit) is achieved within the range from 1.3334 to 1.4081.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号