首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a Eulerian/Lagrangian model to compute the evolution of a spray of water droplets inside a complex geometry. To take into account the complex geometry we define a rectangular mesh and we relate each mesh node to a node function which depends on the location of the node. The time-dependent incompressible and turbulent Navier-Stokes equations are solved using a projection method. The droplets are regarded as individual entities and we use a Lagrangian approach to compute the evolution of the spray. We establish the exchange laws related to mass and heat transfer for a droplet by introducing a mass transfer coefficient and a heat transfer coefficient. The numerical results from our model are compared with those from the literature in the case of a falling droplet in the atmosphere and from experimental investigation in a wind tunnel in the case of a polydisperse spray. The comparison is fairly good. We present the computation of a water droplet spray inside a complex and realistic geometry and determine the characteristics of the spray in the vicinity of obstacles.  相似文献   

2.
For the purpose of modeling the motion of a solid with a cavity filled with a viscous fluid, M. A. Lavrent'ev [1] has proposed a model in the form of a solid with a spherical cavity in which another solid, spherical in shape, is enclosed. The sphere is separated from the cavity walls by a small, clearance in which viscous forces act (a lubricating film). This simple model with a finite number of degrees of freedom possesses certain mechanical properties of a solid with a cavity containing a viscous fluid. Study of this model is therefore of interest.The present paper examines certain properties of the model, which will be termed a solid with a damper. It is shown that for a highviscosity lubricant the motion of a solid with a damper can be described by the same equations which pertain to the motion of a solid with a spherical cavity filled with a high-viscosity fluid. Expressions relating the parameters of the systems are obtained. If these relations are fulfilled, the systems become mechanically equivalent.The steady motions of a free solid with a damper and their stability conditions are determined.These motions and stability conditions hold for a body with a cavity filled with a viscous fluid [2].  相似文献   

3.
We investigate the Andronov-Hopf bifurcation of the birth of a periodic solution from a space-homogeneous stationary solution of the Neumann problem on a disk for a parabolic equation with a transformation of space variables in the case where this transformation is the composition of a rotation by a constant angle and a radial contraction. Under general assumptions, we prove a theorem on the existence of a rotating structure, deduce conditions for its orbital stability, and construct its asymptotic form. __________ Translated from Neliniini Kolyvannya, Vol. 9, No. 2, pp. 155–169, April–June, 2006.  相似文献   

4.
The motion of a spherical cavity in a fluid is investigated. The radius of the sphere varies under the action of a constant pressure at infinity. The problems of the collapse of a cavity moving in an unbounded fluid and of the collapse of a cavity near a plane are solved in the exact formulation. The occurrence of an initial translational velocity or the presence of a solid surface, by contrast with the collapse of a sphere at rest in an unbounded fluid [1], yields a limiting radius at which the process of collapse ceases. A sphere initially at rest near a plane always comes into contact with the plane as a result of collapse. The radius and velocities at which the sphere arrives the plane are calculated for various initial distances from the latter. The possible mechanism of the action of a cavitation bubble on a solid surface is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 94–103, September–October, 1971.  相似文献   

5.
In this paper a simple method is presented to analyze the time variation of the principal-strain directions. The experimental arrangement to be used consists of a dark-field linear polariscope, a beam of monochromatic parallel light with a small diameter penetrating the measuring point with normal incidence. The variation of the light intensity behind the analyzer was measured by a photocell and a CRO. According to the method introduced here, two variations of light intensity were measured by choosing two orientations of the crossed system of polarizer and analyzer. The difference between the orientations is 45 deg. This method was applied to the analysis of the resulting principal directions in a region in which a superposition of a compression and a shear wave occurred. These waves were produced in a photoelastic foil, which was cemented on a brass rod impacted longitudinally. The compressional main pulse generated in the rod has a duration of about 25 μs. This experimental arrangement will be used later to investigate the behavior of the photoelastic material under short-time loading.  相似文献   

6.
Two practical techniques are proposed in this paper to simulate a flow contained in a plenum with a downstream tube bundle under a PC environment. First, a technique to impose slip wall conditions on smooth‐faced planes and sharp edges is proposed to compensate for the mesh coarseness relative to boundary layer thickness. In particular, a new type of Poisson equation is formulated to simultaneously satisfy both such velocity boundary conditions on walls and the incompressibility constraint. Second, a numerical model for a downstream tube bundle is proposed, where hydraulic resistance in a tube is imposed as a traction boundary condition on a fluid surface contacting the tube bundle end. The effectiveness of the techniques is numerically demonstrated in the application to a flow in a condenser water box. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The motion of a vortex near a boundary of arbitrary shape is considered within the framework of a two-dimensional problem. Integrable differential equations of motion are obtained. Two forms of the algebraic equation of the vortex trajectories are derived. Examples of vortex motion near a straight-line boundary, in a channel, in an angular domain, in the neighborhood of a flat edge, in a round basin, and near a parabolic boundary.  相似文献   

8.
This paper presents a detailed numerical solution to a simplified version of two-dimensional stratified flow over a backward-facing step with a Froude number of 16/9, a Reynolds number of 800 and a Prandtl number of 1—one of the Open Boundary Condition Symposium test problems. The steady state solution was derived by integrating the time-dependent Boussinesq equations forward in time using a semi-implicit finite-element-based model on a 38400-element mesh. In addition to presenting the results derived on this grid, the paper also presents the results of a Richardson extrapolation calculation for a set of ‘key’ parameters. It is hoped that this solution can be used as a baseline to compare the performance of the various techniques discussed at the Open Boundary Condition Symposium.  相似文献   

9.
Within the thin-layer approximation for a highly-viscous heavy incompressible fluid, a hydrodynamicmodel of a 3D isothermal lava flow over a non-axisymmetric conical surface is constructed. Using analytical methods, a self-similar solution for the law of leading-edge propagation is obtained in the case of a flow from a non-axisymmetric source located at the apex of a conical surface with smoothly varying properties. In the case of a flow over a substantially non-axisymmetric surface, it is shown that there exists a self-similar solution for the free-surface shape and the law of leading-edge motion. This solution is studied numerically for particular examples of the substrate surface and the source. In the general case of a non-self-similar flow over a substantially non-axisymmetric conical surface, a local analytical solution is obtained for the free-surface shape and the velocity field near the leading flow front.  相似文献   

10.
The steady-state response of a free and infinite Timoshenko beam is specified analytically in terms of non-dimensional displacements and stresses. The beam is supposed loaded by a travelling concentrated force or a moving step load. By a validated explicit numerical calculation, it is shown how a load travelling on a beam at constant velocity, from defined time and abscissa, generates a response which evolves towards the steady-state solution for a part, and towards a quantified transient solution for another part. Asymptotic values are given for the transient displacements and stresses according to the time and the speed of the loading. The solution is also found for a plate subject to a pressure, which spreads respecting the cylindrical symmetry. It is possible to identify in the response a part which follows the pressure front, and which is comparable with the steady-state response of a beam, and another transient part, which generates displacements and stresses with a much less oscillating character. An asymptotic solution is also presented for the plate.The whole series of the results makes it possible to better understand qualitatively the beginning of the transient response of a beam or of a plate to a moving load, and also makes it possible to estimate the stresses and displacements without needing specialised numerical codes.  相似文献   

11.
Recent applications in flexible electronics require that thin metal films grown on elastomer substrates be deformable. However, how such laminates deform is poorly understood. While a freestanding metal film subject to tension will rupture at a small strain by undergoing a necking instability, we anticipate that a substrate will retard this instability to an extent that depends on the relative stiffness and thickness of the film and the substrate. Using a combination of a bifurcation analysis and finite element simulations, we identify three modes of tensile deformation. On a compliant elastomer, a metal film forms a neck and ruptures at a small strain close to that of a freestanding film. On a stiff elastomer, the metal film deforms uniformly to large strains. On an elastomer of intermediate compliance, the metal film forms multiple necks, deforms much beyond the initial bifurcation, and ruptures at a large strain. Our theoretical predictions call for new experiments.  相似文献   

12.
An analytical solution is obtained that describes fiber spinning with a given force on the receiving bobbin. As an example, a calculation is made of the response of the final fiber section to a periodically varying draw force; a solution is constructed that describes the propagation along the fiber of a finite perturbation associated with a change in the conditions at the spinneret for a fixed draw force. The problem of the small perturbations of a fiber spun at a given rate onto a bobbin is reduced to a linear integrodifferential equation with retardation whose characteristic equation determines the region of the “draw resonance” instability. The reasons for the occurrence for the instability are elucidated.  相似文献   

13.
The electric current formation in aircraft jet engine ducts and the electric current flowing into the gas dynamic wake behind a heated blade have been simulated experimentally. Two models were used in the experiments: a cylindrical metal channel through which a high-temperature gas flows and a metal blade (from a blade engine) in a high-temperature jet. The working medium was created in a gas-burning apparatus in which a propane jet was diffusively burned in a wake air flow. The dependence of the electric engine current on the air flow rate in the wake is given. The results obtained are qualitatively explained.  相似文献   

14.
We derive a wave equation for small-amplitude, undamped, extensional oscillation of a spring-mass system consisting of a mass suspended on a spring governed by a quadratic force-extension relationship. We justify this quadratic model using a Taylor series expansion of the general elasticity equations for a helical spring. Transformation of the equation of motion of the spring leads to a separable wave equation with the spacial component being a transformation of Bessel's equation. The model is successful in predicting static extension and period of oscillation of a helical wire spring for which the wave equation based on Hooke's law is inadequate.  相似文献   

15.
This paper discusses questions of constructing a solution of the gasdynamic equations near a line of curvature discontinuity at the surface of a detonation wave, propagating under Chapman—Jouguet conditions. It describes the construction of the solution in two cases: in a flow arising with the initiation of a detonation along a half-plane in a quiescent homogeneous combustible gas and in a flow arising with the initiation of a detonation along a half-line under these same conditions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 120–126, January–February, 1978.  相似文献   

16.
We propose a new derivation of the evolution equation of a sharp, coherent interface in a two-phase body having elongated shape, a body which we regard as a one-dimensional micropolar continuum. To this aim, we introduce a system of forces acting at the interface, and we apply the method of virtual powers to derive a balance law involving these forces. By exploiting the dissipation inequality, we manage to write this balance law in terms of a scalar field whose form is reminiscent of a well-known expression for the configurational stress in three dimensional micropolar continua.  相似文献   

17.
18.
In this paper we validate the generalized geometric entropy criterion for admissibility of shocks in systems which change type. This condition states that a shock between a state in a hyperbolic region and one in a nonhyperbolic region is admissible if the Lax geometric entropy criterion, based on the number of characteristics entering the shock, holds, where now the real part of a complex characteristic replaces the characteristic speed itself. We test this criterion by a nonlinear inviscid perturbation. We prove that the perturbed Cauchy problem in the elliptic region has a solution for a uniform time if the data lie in a suitable class of analytic functions and show that under small perturbations of the data a perturbed shock and a perturbed solution in the hyperbolic region exist, also for a uniform time.  相似文献   

19.
A three-field local projection stabilized (LPS) finite element method is developed for computations of a three-dimensional axisymmetric buoyancy driven liquid drop rising in a liquid column where one of the liquid is viscoelastic. The two-phase flow is described by the time-dependent incompressible Navier-Stokes equations, whereas the viscoelasticity is modeled by the Giesekus constitutive equation in a time-dependent domain. The arbitrary Lagrangian-Eulerian (ALE) formulation with finite elements is used to solve the governing equations in the time-dependent domain. Interface-resolved moving meshes in ALE allows to incorporate the interfacial tension force and jumps in the material parameters accurately. A one-level LPS based on an enriched approximation space and a discontinuous projection space is used to stabilize the numerical scheme. A comprehensive numerical investigation is performed for a Newtonian drop rising in a viscoelastic fluid column and a viscoelastic drop rising in a Newtonian fluid column. The influence of the viscosity ratio, Newtonian solvent ratio, Giesekus mobility factor, and the Eötvös number on the drop dynamics are analyzed. The numerical study shows that beyond a critical Capillary number, a Newtonian drop rising in a viscoelastic fluid column experiences an extended trailing edge with a cusp-like shape and also exhibits a negative wake phenomena. However, a viscoelastic drop rising in a Newtonian fluid column develops an indentation around the rear stagnation point with a dimpled shape.  相似文献   

20.
The supersonic unsteady flow of a gas past a lattice of thin, slightly curved profiles has been investigated in several studies. The paper [1] is devoted to an evaluation of the effect of wind tunnel walls on the unsteady aerodynamic characteristics of a profile, and [2] investigates the effects of the boundaries of a free jet. These cases are equivalent respectively to the anti-phase and in-phase oscillations of the profiles of an unstaggered grid. In [3] consideration is given to a more general case of gas flow past a profile in a wind tunnel with perforated walls. Flow past a lattice of profiles with stagger is studied in [4], where the magnitude of the stagger angle is limited by the condition that the lattice leading edge is located in the undisturbed stream.In the present paper we present a method of calculation of the unsteady supersonic flow of a gas past a lattice of profiles with arbitrary stagger. As an example the results are presented of the calculation of the aerodynamic forces and moments acting on an oscillating profile in a wind tunnel with solid walls and in a free jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号