首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Crystal Growth》2003,247(3-4):393-400
Using a highly conductive ZnO(ZnAl2O4) ceramic target, c-axis-oriented transparent conductive ZnO:Al2O3 (ZAO) thin films were prepared on glass sheet substrates by direct current planar magnetron sputtering. The structural, electrical and optical properties of the films (deposited at different temperatures and annealed at 400°C in vacuum) were characterized with several techniques. The experimental results show that the electrical resistivity of films deposited at 320°C is 2.67×10−4 Ω cm and can be further reduced to as low as 1.5×10−4 Ω cm by annealing at 400°C for 2 h in a vacuum pressure of 10−5 Torr. ZAO thin films deposited at room temperature have flaky crystallites with an average grain size of ∼100 nm; however those deposited at 320°C have tetrahedron grains with an average grain size of ∼150 nm. By increasing the deposition temperature or the post-deposition vacuum annealing, the carrier concentration of ZAO thin films increases, and the absorption edge in the transmission spectra shifts toward the shorter wavelength side (blue shift).  相似文献   

2.
The processes of charge transport and trapping in amorphous Si1 ? xCx:H films deposited on crystalline p-type Si wafers and annealed in vacuum in the temperature range 300–650 °C have been evaluated. Current–voltage (IV), capacitance–voltage (CV) and admittance–temperature (G–T) characteristics were measured in the temperature range 100–350 K. The spectrum of thermal effusion of hydrogen was measured from room temperature up to 1000 °C.C–V characteristics indicate a slight increase of the dielectric constant k and a large hysteresis after annealing at 450 °C. The hysteresis is believed to be associated with mobile hydrogen effusion from the a-SiC:H film, and it is not seen after a 650 °C anneal. From IV data the maximum rectification ratio is observed after annealing at 450 °C. Variable-range hopping (VRH) conduction at the Fermi level is found to dominate the forward current of the as-deposited structure. After annealing at 450 °C the forward current can be described by space-charge limited (SCL) mechanisms with trapping at shallow levels with energy of about 0.12 eV. After annealing at 650 °C the process of VRH conduction appears again, but the density of hopping sites is much higher than in the as-grown sample. From admittance spectra, the energy position of respective traps in a-SiC:H is at (EV + 0.45) eV for as-deposited material and it decreases slightly after vacuum annealing. On the basis of these results, an energy band diagram of the a-Si1 ? xCx:H/p-Si structure annealed at 450 °C is proposed.  相似文献   

3.
Glasses in the system MgO/Al2O3/TiO2/ZrO2/SiO2 with and without the addition of As2O3 and Sb2O3 were thermally treated. Up to a temperature of 950 °C, this resulted in the formation of ZrTiO4, sapphirine and high quartz solid solution. Annealing at higher temperatures led to the formation of low quartz solid solutions, ZrTiO4 and sapphirine. This resulted in a continuous increase of density, hardness, fracture toughness and thermal expansivity. In the glass doped with As2O5 and Sb2O5 annealing temperatures >1000 °C resulted in the formation of cristobalite instead of quartz. Then the density, hardness and strength decreased again, while the fracture toughness (up to 2.8 MPa m1/2) and the thermal expansion coefficient increased strongly. In the dilatometric curves, a steep increase in expansion is observed in the temperature range from 100 to 200 °C, which is attributed to the transformation of low cristobalite to high cristobalite. The mean linear thermal expansion coefficient (25–200 °C) is 20 × 10?6 K?1 and the largest up to now reported in the literature for alkali-free silicate glass–ceramics.  相似文献   

4.
Routes to atomic layer-deposited TiO2 films with decreased leakage have been studied by using electrical characterization techniques. The combination of post-deposition annealing parameters, time and temperature, which provides measurable aluminum–titanium oxide–silicon structures – i.e., having capacitance–voltage curves which show accumulation behavior – are 625 °C, 10 min for p-type substrates, and 550 °C, 10 min for n-type substrates. The best annealing conditions for p-type substrates are 625 °C with the length extended to 30 min, which produces an interfacial state density of about 5–6 × 1011 cm?2 eV?1, and disordered-induced gap state density below our experimental limits. We have also proved that a post-deposition annealing must be applied to TiO2/HfO2 and HfO2/TiO2/HfO2 stacked structures to obtain adequate measurability conditions.  相似文献   

5.
《Journal of Non》2007,353(13-15):1437-1440
Surface morphology and roughness of amorphous spin-coated As–S–Se chalcogenide thin films were determined using atomic force microscopy. Prepared films were coated from butylamine solutions with thicknesses d  100 nm and then annealed in a vacuum furnace at 45 °C and 90 °C for 1 h for their stabilization. The root mean square surface roughness analysis of surfaces of as-deposited spin-coated As–S–Se films indicated a very smooth film surface (with Rq values 0.42–0.45 ± 0.2 nm depending on composition). The nanoscale images of as-deposited films confirmed that surface of the films is created by domains with dimensions 20–40 nm, which corresponds to diameters of clusters found in solutions. The domain character of film surfaces gradually disappeared with increasing annealing temperature while the solvent was removed from the films. Middle-infrared transmission spectra recorded a decrease of intensities of vibration bands connected to N–H (at 3367 and 3292 cm−1) and C–H (at 2965, 2935 and 2880 cm−1) stretching vibrations. Temperature regions of solvent evaporation T = 60–90 °C and glass transformation temperatures Tg = 135–150 °C of spin-coated As–S–Se thin films were determined using a modulated differential scanning calorimetry.  相似文献   

6.
《Journal of Non》2007,353(44-46):4048-4054
The nanostructural, chemical, and optical features of AlxSi0.45−xO0.55 (0  x 0.05) thin films were investigated in terms of Al concentration and post-deposition annealing conditions; the films were prepared by co-sputtering a Si main target and Al-chips, and the annealing was carried out at temperatures of 400–1100 °C. The a-Si0.45O0.55 films prepared without Al-chips and annealed at 800 °C contain ∼3.5 nm-sized Si nanocrystallites. The photoluminescence (PL) intensity as well as the volume fraction of Si nanocrystallites increased with increasing the concentration of Al to a certain level. In particular, the intensity of the PL spectra of the Al0.025Si0.425O0.550 films which were annealed at 800 °C increased significantly at wavelengths of ∼580 nm. It is highly likely that the observed increase in the PL intensity is caused by the raise in the total volume of the ∼3.5 nm-sized nanocrystallites in the films. The addition of Al as well as the post-deposition annealing allow adjustment and control of the nanostructural and light-emission features of the a-SiOx films.  相似文献   

7.
Doris Ehrt 《Journal of Non》2008,354(2-9):546-552
Glasses with 55–60 mol% SnO and 40–45 mol% P2O5 have shown extremely large differences in the chemical and thermal properties depending on the temperature at which they were melted. Glasses prepared at low melting temperature, 450–550 °C, had low Tg, 150–200 °C, and low chemical stability. Glasses prepared at high melting temperature, 800–1200 °C, had much higher Tg, 250–300 °C, and much higher chemical stability. No significant differences were found by 119Sn Mössbauer and 31P Nuclear Magnetic Resonance spectroscopy. Large differences in the OH-content could be detected as the reason by infrared absorption spectroscopy, thermal analyses, and 1H Nuclear Magnetic Resonance spectroscopy. In samples with low Tg, a broad OH – vibration band around 3000 nm with an absorption intensity >20 cm?1, bands at 2140 nm with intensity ~5 cm?1, at 2038 nm with intensity ~2.7 cm?1, and at 1564 nm with intensity ~0.4 cm?1 were measured. These samples have shown a mass loss of 3–4 wt% by thermal gravimetric analyses under argon in the temperature range 400–1000 °C. No mass loss and only one broad OH-band with a maximum at 3150 nm and low absorption intensity <4 cm?1 could be detected in samples melted at high temperature, 1000–1200 °C, which have much higher Tg, ~300 °C, and much higher chemical stability.  相似文献   

8.
《Journal of Non》2007,353(16-17):1567-1576
The crystallization behavior of two polymer-derived Si/B/C/N ceramics with similar compositions lying close to the three-phase field BN + SiC + C was investigated by (high-resolution) transmission electron microscopy. The materials were high-temperature mass stable up to T = 2000 °C. During thermolysis at 1050 °C a homogeneous amorphous solid formed. SiC crystallization started at about 1400 °C. Further annealing to higher temperatures up to 2000 °C led to formation of microstructures composed of SiC crystals embedded into a structured BNCx matrix phase. With increasing temperature, both the size of the crystallites and the ordering of the matrix phase increased.  相似文献   

9.
A new borate single crystal of Sr3Tb(BO3)3 with dimension Ф20×25 mm2 has been grown by the Czochralski method. The grown crystal was characterized by DTA–TGA, FTIR and X-ray powder diffraction analysis. The results showed the crystal with [BO3]3? is congruently melting at 1351.35 °C which belongs to hexagonal structure. The hardness of Sr3Tb(BO3)3 crystal is 422.5 VDH, and is equal to 5.0 moh. The thermal expansion coefficients were determined to be 2.08×10?5/°C along (1 0 0) direction and 7.43×10?6/°C along (0 0 1) direction and the transmission spectrum was measured in 320–1800 nm at room temperature. The magnetic properties of the single crystal were studied which showed its paramagnetism and magnetic anisotropy. The specific Faraday rotation of single crystal was measured at room temperature in 532, 633, and 1064 nm wavelength. The Verdet constants and magneto-optical figures of merit were investigated. The primary emphasis is laid to explore a new magneto-optical material, all the magneto-optical properties of Sr3Tb(BO3)3 are comparing to the ones of TGG.  相似文献   

10.
MgxZn1?xO thin films were deposited on quartz substrates by RF magnetron sputtering. The effect of post-annealing temperature on structural, optical, and electrical properties was investigated with the annealing temperatures increasing from 450 to 750 °C. The crystallinity of MgxZn1?xO film annealed at 650 °C was significantly improved while the film annealed at 750 °C showed little improvement. The electrical properties degraded with the increase of annealing temperature. The annealing temperature seemed to impact the Eg value of MgxZn1?xO thin films because of the variation of carrier concentration.  相似文献   

11.
The effect of post-deposition isothermal annealing (30 °C ? TA ? 70 °C) and visible-light illumination on the complex AC-impedance of undoped selenium thin films deposited at the substrate temperatures TS = 30, 50, 70 °C has been studied in the frequency range 0.2–12 kHz. The AC-impedance of amorphous selenium (a-Se) films (TS, TA < 50 °C) was mainly capacitive, with no loss peaks being observed in their Z″(ω)–ω curves, irrespective of illumination. This behavior was ascribed to a dominant charge-carrier trapping effect of bulk/surface charged defects usually present in a-Se. On the other hand, the measured Z″(ω)–Z′(ω) diagrams of illuminated polycrystalline Se samples (50 °C ? TS, TA ? 70 °C) exhibited almost full semicircles, whereas their Z″(ω)–ω curves revealed prominent loss peaks at well-defined frequencies. As the annealing temperature or light intensity is increased the loci of the points determined by intersections of these semicircles with the Z′-axis at the low-frequency side shift greatly towards the origin, while the loss-peak positions shift to higher frequencies. These experimental findings were explained in terms of a significant increase in electrical conductivity of selenium films due to thermally-induced crystallization at temperatures beyond glass-transformation region of undoped selenium and to creation of electron–hole pairs by visible-light illumination.  相似文献   

12.
Mixed alkali earth element containing high nitrogen content oxynitride glasses (Ca1?xAEx)1.2(1)SiO1.9(1)N0.86(6), with AE = Mg, Sr, Ba, x  0.30 for Mg and x  0.46 for Sr and Ba, and nominally constant (Ca/AE):Si:O:N ratios were prepared in order to investigate the compositional dependencies of physical properties on alkali earth element composition. The glasses were prepared by melting mixtures of AEH2, CaH2, SiO2 and Si3N4 powders in nitrogen atmosphere at 1600–1700 °C and characterized by X-ray powder diffraction and scanning and transmission electron microscopy. Cation and anion glass compositions were determined by respectively energy dispersive X-ray analysis and combustion analysis. The determined physical properties were density, glass transition temperature, Vickers hardness, and refractive index. The physical properties were found to vary linearly with the degree of substitution of Ca by the AE elements. The density of the glasses increases substantially upon substitution by Sr and Ba, up to 3.99 g/cm3. Glass transition temperatures are found to be higher for Mg and Sr substituted glasses, ca. 900 °C, in comparison with Ba substituted glasses, ca. 850 °C. The hardness increases upon substitution by Mg, up to 12.2 GPa at x = 0.46, and decreases upon substitution by Sr and Ba. The refractive index increases upon substitution by Sr and Ba, up to 1.97 for Ba at x = 0.46, and decreases upon substitution by Mg. The transparency of the glasses was found to increase upon increasing substitution by Mg and completely transparent glasses were obtained for x = 0.24.  相似文献   

13.
The influence of thermal annealing on the crystalline silicon surface passivating properties of selected amorphous silicon containing layer stacks (including intrinsic and doped films), as well as the correlation with silicon heterojunction solar cell performance has been investigated. All samples have been isochronally annealed for 1 h in an N2 ambient at temperatures between 150 °C and 300 °C in incremental steps of 15 °C. For intrinsic films and intrinsic/n-type stacks, an improvement in passivation quality is observed up to 255 °C and 270 °C, respectively, and a deterioration at higher temperatures. For intrinsic/n-type a-Si:H layer stacks, a maximum minority carrier lifetime of 13.3 ms at an injection level of 1015 cm? 3 has been measured. In contrast, for intrinsic/p-type a-Si:H layer stacks, a deterioration in passivation is observed upon annealing over the whole temperature range. Comparing the lifetime values and trends for the different layer stacks to the performance of the corresponding cells, it is inferred that the intrinsic/p-layer stack is limiting device performance. Furthermore, thermal annealing of p-type layers should be avoided entirely. We therefore propose an adapted processing sequence, leading to a substantial improvement in efficiency to 16.7%, well above the efficiency of 15.8% obtained with the ‘standard’ processing sequence.  相似文献   

14.
Glasses with composition 50GeO2–(50?x)PbO–5PbF2xLnF3 (Ln = Pr3+–Yb3+) were prepared from commercial raw materials. The content of PbF2 was constant and amounted to 5 mol% whereas the concentration of luminescent ions was diverse (0.2 and 2 mol%). Thermal stability of the glasses were monitored by differential thermal analysis (DTA). It has been found that increase of rare-earth fluoride content from 0.2 mol% to 2 mol% brings about a shift of the glass crystallization onset from 450 °C to 487 °C for Nd-doped samples and from 466 °C to 482 °C for Tm-doped samples. Optical absorption and emission spectra of Ln active ions in oxyfluoride glass have been investigated at room temperature in the ultraviolet (UV), visible (VIS) and near-infrared (NIR) region. Oscillator strengths, phenomenological Judd–Ofelt intensity parameters Ω2,4,6, radiative transition probabilities, branching ratios and radiative lifetimes of luminescent levels have been estimated. Analysis of decay curves of luminescence revealed that the increase of rare-earth fluoride content from 0.2 mol% to 2 mol% shortens the lifetime of the 4F3/2 level of Nd3+ from 224 μs to 90 μs.  相似文献   

15.
We have studied the impact of temperature and pressure on the structural and electronic properties of Ge:P layers grown with GeH4+PH3 on thick Ge buffers, themselves on Si(0 0 1). The maximum phosphorous atomic concentration [P] exponentially decreased as the growth temperature increased, irrespective of pressure (20 Torr, 100 Torr or 250 Torr). The highest values were however achieved at 100 Torr (3.6×1020 cm?3 at 400 °C, 2.5×1019 cm?3 at 600 °C and 1019 cm?3 at 750 °C). P atomic depth profiles, “box-like” at 400 °C, became trapezoidal at 600 °C and 750 °C, most likely because of surface segregation. The increase at 100 Torr of [P] with the PH3 mass-flow, almost linear at 400 °C, saturated quite rapidly at much lower values at 600 °C and 750 °C. Adding PH3 had however almost no impact on the Ge growth rate (be it at 400 °C or 750 °C). A growth temperature of 400 °C yielded Ge:P layers tensily-strained on the Ge buffers underneath, with a very high concentration of substitutional P atoms (5.4×1020 cm?3). Such layers were however rough and of rather low crystalline quality in X-ray Diffraction. Ge:P layers grown at 600 °C and 750 °C had the same lattice parameter and smooth surface morphology as the Ge:B buffers underneath, most likely because of lower P atomic concentrations (2.5×1019 cm?3 and 1019 cm?3, respectively). Four point probe measurements showed that almost all P atoms were electrically active at 600 °C and 750 °C (1/4th at 400 °C). Finally, room temperature photoluminescence measurements confirmed that high temperature Ge:P layers were of high optical quality, with a direct bandgap peak either slightly less intense (750 °C) or more intense (600 °C) than similar thickness intrinsic Ge layers. In contrast, highly phosphorous-doped Ge layers grown at 400 °C were of poor optical quality, in line with structural and electrical results.  相似文献   

16.
《Journal of Non》2007,353(52-54):4819-4822
The Li2Al2Si3O10 glass-ceramics well crystallized and with a regular morphology was produced starting from a mixture of Li2CO3, TiO2, Al2O3 and coal bottom ash, after reducing the magnetite phase content. Its measured thermal expansion coefficient in the temperatures range from 25 °C to 300 °C is α(25–300) = −23.4 × 10−7 °C−1. This value is ≈18% smaller than that for the commercial lithium glass-ceramics (−23.4 × 10−7 °C−1 to 50 × 10−7 °C−1).  相似文献   

17.
《Journal of Non》2007,353(11-12):1037-1040
Amorphous Eu2O3 was prepared by an aqueous sol–gel method. Emission due to the 5D0  7FJ (J = 0, 1, 2) transitions of Eu3+ ions were observed. The dominant transition was the 5D0  7F2 red emission of Eu3+. The properties of the as-prepared samples were different with changes in the annealing temperature. To investigate the luminescence properties of the amorphous Eu2O3, the temperature-dependent photoluminescence (PL) spectra of samples annealed at 600 °C were measured in the temperature range 77–300 K. PL peak positions were unchanged with the change of temperature.  相似文献   

18.
《Journal of Non》2007,353(22-23):2244-2249
Transparent conductive oxides such as indium tin oxide (ITO) are interesting materials due to their wide-band gaps, high visible light transmittance, high infrared reflectance, high electrical conductivity, hardness and chemical inertness. ITO films were fabricated on soda lime glass substrates by using high-intensity pulsed ion beam (HIPIB) technique. The as-deposited films comprised of partially crystallized In2O3 and after annealing at 500 °C for 1 h the film changed to polycrystalline phase. After annealing carrier concentration and Hall mobility increased while specific resistance and sheet resistance decreased quickly; and this trend was also observed when film thickness increased up to 300 nm for the post-annealed samples. Further increase in thickness of the film changed the electrical properties slightly. Atomic force microscopy (AFM) revealed that roughness decreased after 500 °C annealing for 1 h in air, except for the film of 65 nm thick. The thickness of the film which relates to the carrier concentration and mobility, degree of crystallization, size of the grain, and connections among grains in film are main factors to determine film’s electrical properties.  相似文献   

19.
Glass samples have been prepared in the NaPO3–KHSO4 binary system with the classical melting, casting and annealing steps. Electrical and dielectrical properties of glass samples were studied. Measurements of DC and AC conductivity and complex electrical permittivity of xNaPO3–(100 ? x)KHSO4 glass system were carried out at temperatures ranging from room temperature to temperature located 15 °C below glass transition temperature Tg. Results showed that changes of NaPO3 concentration considerably affect values of observed parameters. DC conductivity of glass increases as NaPO3 concentration grows until concentration x = 60. However, beyond this value a sharp decrease of DC conductivity was observed. In addition relaxation times showed abrupt changes at concentration x = 60, corresponding to the lowest relaxation times at the temperature 90 °C.  相似文献   

20.
We report structural and magnetic properties of fine particles embedded in an amorphous magnetic matrix. As-quenched amorphous Fe73.5Nb3CuSi13.5B9 ribbons (FINEMET) were submitted to the thermal treatments of several times (1 ? t ? 240 min) at 570 °C using a conventional furnace. The analyses of the X-ray diffraction patterns at room temperature reveal that our samples consist of single phase Fe3Si nanocrystals embedded in a residual amorphous phase. Magnetic measurements show that the saturation moment at T = 450 °C increases as a function of annealing time. This behavior is attributed to an increase of the fraction of nanocrystallites in the residual amorphous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号