首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The spectral properties such as singlet absorption, molar absorptivity, emission spectra, fluorescence quantum yield and excited state lifetime of 3-(4′-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP) have been determined in different solvents. DMAFP dye exhibits a large red shift in both electronic absorption and emission spectra as the solvent polarity increases, indicating a large change in the dipole moment of molecules upon excitation. A crystalline solid of DMAFP gives an excimer like emission at 566 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B-type class of Steven's classification. The ground and excited state protonation constants of DMAFP are calculated and amounted to 1.71 and 8.3, respectively. DMAFP acts as a good laser dye upon pumping with nitrogen laser (λex=337.1 nm) in chloroform, methylene chloride and dioxane and gives laser emission in the range 460–590 nm. The laser parameters such as the tuning range, gain coefficient (α), emission cross section (σe) and half-life energy (E1/2) are calculated. The photoreactivity and net photochemical quantum yield of DMAFP in chloromethane solvents are also studied.  相似文献   

2.
The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10−3 mol dm−3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser (λex=337.1 nm). The laser parameters such as tuning range, gain coefficient (α), emission cross section (σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl4 at a wavelength of 366 nm. The values of photochemical yield (?c) and rate constant (k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.  相似文献   

3.
4.
The excitation wavelength dependence of the steady-state and time-resolved emission spectra of ethyl 5-(4-aminophenyl)-3-amino-2,4-dicyanobenzoate (EAADCy) in tetrahydrofuran (THF) at room temperature has been examined. It is found that the ratio of the fluorescence intensity of the long-wavelength and short-wavelength fluorescence bands strongly depends on the excitation wavelength, whereas the wavelengths of the fluorescence excitation and fluorescence bands maxima are independent on the observation/excitation wavelengths. The dynamic Stokes shift of fluorophore in locally excited (LE) and intramolecular charge transfer (ICT) states has been studied with a time resolution about 30 ps. The difference between Stokes shift in the LE and ICT states was attributed to the solvent response to the large photoinduced dipole moment of EAADCy in the fluorescent charge transfer state. On this base we can state that, the relaxation of the polar solvent molecules around the fluorophore was observed.  相似文献   

5.
In the present work, the absorption, emission spectra and dipole moments(μg, μe) of N, N-bis (2, 5-di-tert-butylphenyl)-3, 4:9, 10- perylenebis (dicarboximide) (DBPI) have been studied in solvents of various polarities at room temperature. Using the methods of solvatochromism, the difference between the first excited singlet state (μe) and ground state (μg) dipole moments was estimated from Lippert – Mataga,, Bakhshiev, Kawski – Chamma – Viallet equations. The change in dipole moment (Δμ) was also calculated using the variation of the Stokes shift with microscopic solvent polarity parameter (E T N ). It was observed that the value of excited singlet state dipole moment is higher (3.53 Debye) than the ground state one (1.92Debye), showing that the excited state of DBPI is more polar than the ground state.  相似文献   

6.
We synthesized two new compounds: Sodium 2-(4′-dimethyl-aminocinnamicacyl)-3,3-(1′,3′- ethyl- enedithio) acrylate (STAA-1) and Sodium 2-(4′-dimethyl-aminocinnamicacyl)-3, 3-(1′,3′-propylenedithio) acrylate (STAA-2). The maximum absorption of these compounds ranges from 460 to 520 nm with different molecular structures in different solvents. Meanwhile, the emission peak of these compounds arranges from yellow (510 nm) to red (605 nm). The emission spectra show red shift according to the strength of the hydrogen bonding property of the solvent. But the absorption spectra do not show clearly relationship with the strength of the hydrogen bonding property of the solvent. The Stoke shift of the compounds ranges from 42 to 102 nm. It changes in the following order, EtOH>H2O>DMF, and STAA-1>STAA-2 in the same solvent. The fluorescent quantum yield of STAA-1 was measured to be 7.12% with quinine sulphate as the standard compound in ethanol. Furthermore, the relationship of the fluorescence of STAA-1 with pH (ranges form 4 to 14) in water (c=∼10−4) was studied to make sure that these compounds could be used as proton sensors.  相似文献   

7.
E,E-2,5-bis[2-(3-pyridyl)ethenyl]pyrazine (BPEP) has been prepared by aldol condensation between 2,5-dimethylpyrazine and pyridine-3-carboxaldehyde. It is characterized by IR, 1H NMR, and 13C NMR. The electronic absorption and emission properties of BPEP were studied in different solvents. BPEP displays a slight solvatochromic effect of the absorption and emission spectrum, indicating a small change in dipole moment of BPEP upon excitation. The dye solutions (1 × 10?4 M) in CHCl3, EtOH and dioxane give laser emission in blue region upon excitation by a 337.1 nm nitrogen pulse (λ = 337 nm). The tuning range, gain coefficient (α) and emission cross – section (σe) have been determined. Ground and excited states electronic geometric optimizations were performed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. A DFT natural bond analysis complemented the ICT. The simulated maximum absorption and emission wavelengths are in line the observed ones in trend, and are proportionally red-shifted with the increase of the solvent polarity. The stability, hardness and electrophilicity of BPEP in different solvents were correlated with the polarity of the elected solvents. BPEP dye displays fluorescence quenching by colloidal silver nanoparticles (AgNPs). The fluorescence data reveal that radiative and non-radiative energy transfer play a major role in the fluorescence quenching mechanism.  相似文献   

8.
The electronic absorption, and emission spectra as well as fluorescence quantum yield of 3-(benzothiazol-2-yl)-7-hydroxycoumarin (BTHC) were measured in different solvents and are affected by solvent polarity (Δf). The deprotonation of BTHC by triethylamine is a reversible process. BTHC is relatively photostable, the quantum yield of photodecomposition (φc) was found to be 2×10−4 and 2.7×10−4 in EtOH and DMF, respectively. The fluorescence lifetimes of BTHC were measured in the absence and in the presence of molecular oxygen and were found to be 2.82 and 2.78 ns, respectively. BTHC acts as good laser dye upon pumping with nitrogen laser (λex=337.1 nm) in ethanol and gives laser emission with maxima at 508 and 522 nm.  相似文献   

9.
The photophysical properties such as electronic absorption, molar absorptivity, emission spectra, fluorescence quantum yield and fluorescence lifetime of N,N′-bis(4-pyridyl)-3,4:9,10-perylene bis(dicarboximide) (BPPD) have been measured in different solvents. Both electronic absorption and fluorescence spectra are not sensitive to medium polarity, while the fluorescence quantum yield (?f) is solvent dependent. The ground state geometry has been computed by using density functional theory (DFT), the transition from HOMO to LUMO from perylene core with maximum absorption at 512 nm and HOMO–LUMO energy difference equal 2.53 eV. BPPD dye undergoes molecular aggregation to dimmer or higher aggregates in dimethyl sulfoxide (DMSO). Crystalline solids of BPPD gives excimer-like emission at 676 nm. The fluorescence quenching of BPPD is also studied using hydrated ferric oxide nanoparticle (FeOOH), and the Stern–Volmer rate constants (Ksv) were calculated as 8×106 and 9.2×106 M?1 in ethanol and ethylene glycol, respectively.  相似文献   

10.
Four cyano groups have been substituted on the aromatic ring of p-hydroquinone (2,3,5,6-tetracyanohydroquinone) in order to study the enhanced photoacidity of this molecule. The acid-base equilibria have been studied using absorption (for ground state pKa) and fluorescence (excited state pKa) spectra. Three distinct species (neutral, anionic and dianionic forms) were observed in the ground state and only two species (anionic and dianionic forms) were found in the excited state when studied at different pH/Ho in water. Absorption and emission characteristics were studied in various organic solvents, including protic and aprotic solvents. Deprotonation was also investigated using binary mixtures. It has been revealed that absorption and emission spectra are considerably changed with change in media. Proton transfer to the solvent has been observed in various solvents.  相似文献   

11.
Spectral characteristics of 2-(4′-amino-3-pyridyl)benzimidazole (4-A3PyBI) have been studied in different solvents, as well as at different acid or base concentrations using absorption, fluorescence excitation and fluorescence spectroscopy. Excited singlet state (S1) lifetimes for each species were measured using nanosecond time-dependent spectrofluorimeter. AM1 semi-empirical and density functional theoretical (DFT) calculations were performed on each species for the spectral assignment. From the above results it is concluded that 4-A3PyBI exists only in the amine form. First protonation occurs at pyridineN- atom and second protonation at the benzimidazole (BI)N- atom. When dication (DC) species is excited, two emission bands are observed, having the same fluorescence excitation spectra, suggesting the same ground state (S0) precursor. Short wavelength (SW) emission band is assigned to the π-π* transition and long wavelength (LW) emission to the charge transfer transition. First deprotonation in S0 state occurs from >N-H moiety, whereas in S1 state it is from -NH2 group. Monoanion (MA) so formed in S1 state is non-fluorescent. Dianion (DA) is formed by further deprotonating >N-H moiety in S1 state and it is fluorescent. pKa values were determined and discussed.  相似文献   

12.
The electronic absorption, fluorescence excitation and emission spectra, and fluorescence quantum yields of novel fused thienobenzofurans, including thieno[3,2-b][1]benzofuran (1), [1]benzothieno[3,2-b]furan (2), and [1]benzothieno[3,2-b][1]benzofuran (3), were recorded in fourteen solvents of different polarities at room temperature. Compound 2 was not fluorescent. Experimental ground-state dipole moments of compounds 13 were measured in benzene at 298 K and compared with the corresponding theoretical dipole moment values. The solvent effects on the electronic absorption and fluorescence spectra of these thienobenzofurans were quantitatively investigated by means of solvatochromic correlations based on the Kawski-Chamma-Viallet and McRae equations. A weak negative solvatochromic behavior was found for these compounds, showing that their dipole moments are slightly lower in the excited singlet-state than in the ground-state. Kamlet-Abboud-Taft multiparameter relationships were also established for electronic absorption and fluorescence wavenumbers, and fluorescence quantum yields in most solvents, demonstrating the occurrence of specific solute-solvent interactions.  相似文献   

13.
A new candidate laser dye based 1,4-bis[β-(2-naphthothisolyl) vinyl] benzene (BNTVB) were prepared, and characterized in various organic solvents. The center polarity is less sensitive than electronic absorption. A red shift was noticed in the fluorescence spectra (ca. 40 nm) with increment in the solvent’s polarity, this means that BNTVB’s polarity appreciates upon excitation. The dipole moment of ground state (μg) and the excited singlet state dipole moment (μe) are determined from Kawski – Chamma and Bakshiev–Viallet equations using the disparity of Stokes shift with solvent polarity function of ε (dielectric constant) and n (refractive index) of the solvent. The result was found to be 0.019D and 5.13D for ground and exited state, in succession. DFT/TD-DFT manners were used to understand the electronic structures and geometric of BNTVB in other solvents. The experimental and theoretical results showed a good agreement. The photochemical quantum yield (Фc) of BNTVB was calculated in variable organic reagents such as Dioxane, CHCl3, EtOH and MeOH at room temperature. The values of φc were calculated as 2.3?×?10?4, 3.3?×?10?3, 9.7?×?10?5 and 6.2?×?10?5 in Dioxane, CHCl3, EtOH and MeOH, respectively. The dye solutions (2?×?10?4 M) in DMF, MeOH and EtOH give laser emission in the blue-green region. The green zone is excited by nitrogen pulse 337.1 nm. The tuning range, gain coefficient (α) and cross – section emission (σe) of laser were also estimated. Excitation energy transfer from BNTVB to rhodamine-6G (R6G) and N,N-bis(2,6-dimethyphenyl)-3,4:9,10-perylenebis-(dicarboximide) (BDP) was also studied in EtOH to increase the laser emission output from R6G and BDP when excited by nitrogen laser. The dye-transfer power laser system (ETDL) obeys the Foster Power Transmission (FERT) mechanism with a critical transmission distance, Ro of 40 and 32 ? and kET equals 2.6?×?1013 and 1.06?×?1013 M?1 s?1 for BNTVB / R6G and BNTVB / BDP pair, respectively.  相似文献   

14.
In this work, we studied influences on the absorption and fluorescence emission spectra of coumarin-4066 (C-466) with different solvent polarity scale. The spectral shifts reflect the effect of the equilibrium solvents association across the energized solute particle, which adjusts inertially as a result of quick charge realignment upon radiative deactivation to the lowest electronic state. The dipole moments of C-466 are determined by employing the Bakhshiev, Kawski-Chamma-Viallet, Lippert-Mataga and McRae relations. The results from all these methods are, excited state dipole moment of C-466 is higher than the ground state dipole moments and which indicates molecule is less polar in the ground state. Theoretical analysis was also carried out by Density Functional theory (DFT and TD –DFT) employing the BECKE-1998 (exchange)/STO-6G basic set in ethanol solvent and in vacuum medium. The HOMO-LUMO, Solvent Accessible Surfaces (SAS) and Molecular Electrostatic Potential (MEP) were analysed to acquire additional knowledge of the molecular arrangement and electronic properties of C-466. These photophysical properties suggest delineation can be mauled for laying out new luminescent tests for various solvents microenvironment.  相似文献   

15.
The photophysicochemical properties of selected fluoroquinolones in different solvents of various physical properties, including polarity and hydrogen bonding ability, were investigated using steady state fluorescence spectroscopy. The solvent-dependant fluorescence emission spectra of selected fluoroquinolones, namely ciprofloxacin (CIPR) and enrofloxacin (ENRO), were employed to gain insights concerning its photophysicochemical properties of interests. Interestingly, fluorescence spectra of the selected drugs exhibited structured emission spectra in nonpolar solvents such as hexane, whereas unstructured spectra were observed in more polar solvents such as alcohols and water. Also, a notable bathochromic shift in $ \lambda_{{\max }}^{{em}} $ was observed in fluorescence spectra of both drugs with increasing solvent polarity that resulted in biphasic behavior upon applying the Lippert-Mataga correlation that correspond to general and specific solvent effects. Applying the Lippert-Mataga correlation to the fluorescence spectra of CIPR and ENRO in various solvents was employed to estimate the dipole moment difference between the ground and excited states of them, $ \Delta \mu \left( {{\mu_e} - {\mu_g}} \right) $ , where obtained results revealed the values of 9.4 and 16.2 Debye for the LE and ICT states of ENRO, respectively, and 8.0 and 16.2 Debye for the LE and ICT states of CIPR, respectively. Multiple linear regression analysis (MLRA) based on Kamlet-Taft equating was applied against absorption frequency (νabs), emission frequency (νem), Stokes shift (?ν), and fluorescence quantum yield (Φf), where obtained results revealed excellent correlation (R: 0.916–0.966) that are consistent with other results considering the effect of solvent polarizability, hydrogen bonding ability, and viscosity on the photophysicochemical properties of the studied fluoroquinolones.  相似文献   

16.
Spectral and fluorescent properties of thiochrome in solvents of different polarity were studied. It was found that the pKa value of the transition between the cationic and neutral forms of thiochrome in aqueous solutions increased from ∼5.5 to 9.7 upon photoexcitation. It is supposed that protonation takes place in the excited state of the molecule resulting in fluorescence quenching of the thiochrome neutral form in aqueous solutions at neutral pH values. The fluorescence quantum yield of thiochrome increased by ∼2.2 times upon the transition from aqueous solutions to alcohols or polar aprotic solvents. It was found that an increase of the solvent polarity led to an increase in the Stokes shift from 3200 to 4200 cm−1 for the thiochrome neutral form emission. The change in the dipole moment upon excitation into the S1-state was estimated to be less than 3D.  相似文献   

17.
The effect of solvents on absorption and fluorescence spectra and dipole moments of novel benzanthrone derivatives such as 3-N-(N′,N′-Dimethylformamidino) benzanthrone (1), 3-N-(N′,N′-Diethylacetamidino) benzanthrone (2) and 3-morpholinobenzanthrone (3) have been studied in various solvents. The fluorescence lifetime of the dyes (1-3) in chloroform were also recorded. Bathochromic shift observed in the absorption and fluorescence spectra of these molecules with increasing solvent polarity indicates that the transitions involved are ππ?. Using the theory of solvatochromism, the difference in the excited-state (μe) and the ground-state (μe) dipole moments was estimated from Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet, and McRae equations by using the variation of Stokes shift with the solvent’s relative permittivity and refractive index. AM1 and PM6 semiempirical molecular calculations using MOPAC and ab-initio calculations at B3LYP/6-31 G? level of theory using Gaussian 03 software were carried out to estimate the ground-state dipole moments and some other physicochemical properties. Further, the change in dipole moment value (Δμ) was also calculated by using the variation of Stokes shift with the molecular-microscopic empirical solvent polarity parameter (ETN). The excited-state dipole moments observed are larger than their ground-state counterparts, indicating a substantial redistribution of the π-electron densities in a more polar excited state for all the systems investigated.  相似文献   

18.
The absorption and fluorescence transition dipole moments ( $\hat M_{ge}$ and $\hat M_{eg}$ ) for ethyl 5-(4-aminophenyl)-3-amino-2, 4-dicyanobenzoate (EAADCy) and ethyl 5-(4-dimethylaminophenyl)-3-amino-2, 4-dicyanobenzoate (EDMAADCy) have been determined on the basis of the steady-state and time-resolved spectroscopic measurements and semiempirical quantum-chemical calculations. The values of the transition dipole moments of perpendicular and flattened forms of the investigated molecules were estimated as a function of the solvent polarity. Noted differences between the absorption and emission transition dipole moments (i.e., ${{\hat M_{ge} } \mathord{\left/ {\vphantom {{\hat M_{ge} } {\hat M_{eg} }}} \right. \kern-0em} {\hat M_{eg} }} \ne 1$ ) confirm that the change of the electronic and molecular structure take place in the excited state.  相似文献   

19.
Solvent effects on 2,3-bis(chloromethyl)-1,4-anthraquinone (DCMAQ) and the molecular recognition of DCMAQ in calix[8]arene were investigated using optical absorption and fluorescence emission techniques. Optical absorption spectra show n→π* band in 350–500 nm region. It also indicates that the dipole–dipole interaction and solvent reorganization energies are responsible for the observed features in different solvents. The observed quantum yield of DCMAQ in different solvents is due to the formation of intermolecular hydrogen bond and reorientation of solvent molecule in the excited state of DCMAQ. Excited state dipole moment of DCMAQ is calculated by solvatochromic data and it shows a higher excited state dipole moment than ground state dipole moment. Optical absorption and fluorescence studies of DCMAQ in calix[8]arene elucidate the evidence for the formation of complex between DCMAQ and calix[8]arene. The inclusion ratios and inclusion constant of the host–guest complexes are also determined.  相似文献   

20.
The effects of polar and nonpolar solvents on both the ground and the excited-state properties of [1-(4-methoxyphenyl)-3-(amino)-2,4-(dicyano)-9,10-tetrahydrophenanthrene] is examined. Light absorption results in a population of a locally excited (LE) first singlet state (S1,n*) which shows sensitivity to the polarity of the surrounding solvent and hydrogen-bonding ability to the quencher 4-methylpyridine. Relaxation of this state leads to an intramolecular charge-transfer state (ICT) which leads to a large Stokes shift in polar solvents and an excited-state dipole moment of e= 10D. The quenching of the fluorescence state by 4-methylpyridine studied inn-hexane and acetonitrile at room temperature is found to be efficient and a positive deviation from linearity was observed in the Stern-Volmer plots even at concentrations of 4-methylpyridine below 0.4M. This is explained as a result of the occurrence of both a dynamic and a static quenching mechanism. The static quenching constants (K sv) along with those obtained by visible spectroscopy (K GS) indicate that the ground-state complex is weak and relatively solvent dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号