首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density, sound velocity, and viscosity of 1-ethyl-3-methylimidazolium bromide, [Emim][Br], in aqueous solutions of tri-potassium phosphate with salt weight fractions (ws = 0.00, 0.10, 0.15, and 0.20) have been measured as a function of concentration of [Emim][Br] at atmospheric pressure and T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. The apparent molar volume, isentropic compressibility, apparent isentropic compressibility, and relative viscosity values have been evaluated from the experimental data. The partial molar volume and isentropic compressibility at infinite dilution, and viscosity B-coefficient obtained from these data have been used to calculate the corresponding transfer parameters for the studied IL from water to the aqueous tri-potassium phosphate solutions. Also, an empirical equation was satisfactorily used to correlate the experimental viscosity data.  相似文献   

2.
(Vapour + liquid) equilibrium data (water activity, vapour pressure, osmotic coefficient, and activity coefficient) of binary aqueous solutions of 1-hexyl-3-methylimidazolium chloride ([C6mim][Cl]), methyl potassium malonate, and ethyl potassium malonate and ternary {[C6mim][Cl] + methyl potassium malonate} and {[C6mim][Cl] + ethyl potassium malonate} aqueous solutions were obtained through the isopiestic method at T = 298.15 K. These results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solutions at molality about 0.4 mol · kg−1. The constant water activity lines of all the ternary systems investigated show small negative deviations from the linear isopiestic relation (Zdanovskii–Stokes–Robinson rule) derived using the semi-ideal hydration model. The density and speed of sound measurements were carried out on solutions of methyl potassium malonate and ethyl potassium malonate in water and of [C6mim][Cl] in aqueous solutions of 0.25 mol · kg−1 methyl potassium malonate and ethyl potassium malonate at T = (288.15 to 308.15) K at atmospheric pressure. From the experimental density and speed of sound data, the values of the apparent molar volume, apparent molar isentropic compressibility and excess molar volume were evaluated and from which the infinite dilution apparent molar volume and infinite dilution apparent molar isentropic compressibility were calculated at each temperature. Although, there are no clear differences between the values of the apparent molar volume of [C6mim][Cl] in pure water and in methyl potassium malonate or ethyl potassium malonate aqueous solutions, however, the results show a positive transfer isentropic compressibility of [C6mim][Cl] from pure water to the methyl potassium malonate or ethyl potassium malonate aqueous solutions. The results have been interpreted in terms of the solute–water and solute–solute interactions.  相似文献   

3.
The apparent molar volumes and isentropic compressibility of glycine, l-alanine and l-serine in water and in aqueous solutions of (0.500 and 1.00) mol · kg?1 di-ammonium hydrogen citrate {(NH4)2HCit} and those of (NH4)2HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH4)2HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH4)2HCit}, {alanine + (NH4)2HCit}, and {serine + (NH4)2HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.  相似文献   

4.
Densities, ρ, and speed of sound, u for glycine, L-alanine and L-valine in (0.2, 0.4, 0.6, and 0.8) mol · kg−1 aqueous solutions of trisodium citrate at T = (288.15, 298.15, 308.15 and 318.15) K have been measured. The different parameters such as apparent molar volume, limiting apparent molar volume, transfer volume, have been derived from density data. Experimental values of the speed of sound were used to estimate apparent molar apparent molar isentropic compression, limiting apparent molar isentropic compression, and transfer parameter. The pair and triplet interaction coefficient have been calculated from transfer parameters.  相似文献   

5.
Precise density and sound velocity measurements have been carried out for aqueous solutions of PPG725 in the absence and presence of (0.2 and 0.5) mol · kg−1 amino acids: alanine, glycine, serine and proline, and also for aqueous solutions of these amino acids in the absence and presence of 0.01 w/w PPG725 at T = (288.15, 293.15, 298.15, 303.15 and 308.15) K. From the experimental density and sound velocity values, the apparent molar volume and isentropic compressibility have been obtained and extrapolated to infinite dilution. The infinite dilution apparent molar properties for transfer of PPG from water to aqueous amino acids solutions and also those for transfer of amino acids from water to aqueous PPG solutions have been studied. Temperature dependency of the infinite dilution apparent molar volume was utilised to determine structure-breaker or structure-maker effects of the solutes. Hydration numbers of the amino acids in the investigated aqueous solutions have been evaluated from the volumetric and compressibility properties. All results are discussed based on the salting-out aptitude of the amino acids (hydrophilic + hydrophobic) interactions and (hydrophobic + hydrophobic) interactions occurred between PPG and the investigated amino acids.  相似文献   

6.
The apparent specific volumes and isentropic compressibilities have been determined for polyvinylpyrrolidone in aqueous solutions of sodium citrate by density and sound velocity measurements at T = (283.15 to 308.15) K at atmospheric pressure. The results show a positive transfer volume of PVP from an aqueous solution to an aqueous sodium citrate solution. For low concentrations of PVP, the apparent specific volumes of PVP in water increased along with an increase in the polymer mass fraction, while in aqueous sodium citrate solutions decreased along with an increase in the polymer mass fraction. For high concentrations of PVP, the apparent specific volumes of PVP in water and in aqueous sodium citrate solutions were independent of the polymer mass fraction. The apparent specific isentropic compressibility of PVP is negative at T = (283.15 and 288.15) K, which imply that the water molecules around the PVP molecules are less compressible than the water molecules in the bulk solutions. The positive values of apparent specific isentropic compressibility at T = (298.15, 303.15, and 308.15) K imply that the water molecules around the PVP molecules are more compressible than the water molecules in the bulk solutions. Finally, it was found that the apparent specific isentropic compressibility of PVP increases as the concentration of sodium citrate increases.  相似文献   

7.
The apparent molar volume and apparent molar isentropic compressibility of solutions of sodium di-hydrogen phosphate (NaH2PO4) in (1-propanol + water) mixed-solvent media with alcohol mass fractions of 0.00, 0.05, 0.10, and 0.15 are reported over the range of temperature (283.15 to 303.15) K at 5 K intervals. The results were fitted to a Redlich–Mayer type equation from which the apparent molar volume and apparent molar isentropic compressibility of the solutions at the infinite dilution were also calculated at the working temperature. The results show a positive transfer volume of NaH2PO4 from an aqueous solution to an aqueous 1-propanol solution. The apparent molar isentropic compressibility of NaH2PO4 in aqueous 1-propanol solutions is negative and it increases with increasing the concentration of NaH2PO4, 1-propanol, and temperature. Electrical conductivity and refractive index of the solutions are also studied at T = 298.15 K. The effects of the electrolyte concentration and relative permittivity of the medium on the molar conductivity were also investigated.  相似文献   

8.
Densities, speeds of sound and refractive indices have been measured for (n -hexane  +  cyclohexane  +  1-hexanol) and its corresponding binaries atT =  298.15 K. In addition, ideal isentropic compressibilities were calculated from the speeds of sound, densities, and literature heat capacities and cubic expansion coefficients. The excess molar volumes and excess isentropic compressibilities, and deviations of the speed of sound and refractive index are correlated by polynomials and discussed.The Nitta–Chao model was used to estimate binary and ternary excess molar volumes, and several empirical equations were also used to calculate the excess and deviation properties.  相似文献   

9.
Viscosity coefficients of (l-alanine-, l-proline, l-valine, l-leucine + 2.0 M aqueous KCl/KNO3) solutions have been determined as a function of amino acid concentration at different temperatures: (298.15, 303.15, 308.15, 313.15, 318.15, and 323.15) K. The trends of variation of viscosity values with increase in the concentration of l-alanine, l-proline, l-valine, and l-leucine in 2.0 M aqueous KCl and 2.0 M aqueous KNO3 solutions, and temperature have been ascribed to the solute–solvent interactions operative in the solutions.  相似文献   

10.
(Liquid + liquid) equilibria (LLE) of the {poly ethylene glycol di-methyl ether 2000 (PEGDME2000) + tri-potassium citrate + H2O} system have been determined experimentally at T = (298.15, 303.15, 308.15, and 318.15) K. The effect of temperature on the binodals and tie-lines for the investigated aqueous two-phase system (ATPS) has also been studied. In this work, the three fitting parameters of the Merchuk equation and an empirical equation that we proposed in our previous work were obtained with the temperature dependence expressed in the linear form with (T  T0) K as a variable. Furthermore, the Othmer–Tobias and Bancroft, a temperature dependent Setschenow-type equation and osmotic virial model, the segment-based local composition models (the extended NRTL and the modified NRTL) were used for the correlation and prediction of the liquid–liquid phase behavior of the system studied. In addition, the effect of the polymers PEGDME2000 and poly ethylene glycol 2000 on the phase forming ability were studied. Also, the free energies of cloud points for this system were calculated from which it was concluded that the increase of the entropy is driving force for formation of studied aqueous two-phase system.  相似文献   

11.
The density, refractive index on mixing, and speed of sound at T =  298.15 K and atmospheric pressure have been measured over the whole composition range for {dimethyl carbonate (DMC), or diethyl carbonate (DEC)  +  methanol  +  toluene}, (diethyl carbonate  +  methanol), (dimethyl carbonate, or diethyl carbonate  +  toluene), and (methanol  +  toluene). Excess molar volumes, changes of refractive index on mixing and deviations in isentropic compressibility for the above systems have been calculated. Redlich–Kister and Cibulka equations have been used to estimate the binary and ternary fitting parameters and standard deviations from the regression lines are shown. Values of derived and excess properties were estimated and compared by different methods.  相似文献   

12.
The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C4mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid–liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C4mim][Br]) and tri-sodium citrate (Na3Cit) are taken. The apparent molar volume of transfer of [C4mim][Br] from water to aqueous solutions of Na3Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C4mim][Br] from water to aqueous solutions of Na3Cit have negative values. The effects of temperature and the addition of Na3Cit and [C4mim][Br] on the liquid–liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na3Cit triggers a salting-out effect, leading to significant upward shifts of the liquid–liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of entropy and enthalpy are the driving forces for biphasic formation.  相似文献   

13.
The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C3), hexyl (C6), heptyl (C7), and octyl (C8)) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol · kg?1 were taken. The values of the compressibilities, expansivity and apparent molar properties for [Cnmim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich–Mayer and the Pitzer’s equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute–solvent and solute–solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made.  相似文献   

14.
Density, ρ, speed of sound, u, and refractive index, nD, at 298.15 K and atmospheric pressure have been measured over the entire composition range for (toluene + methyl acetate + butyl acetate) and (toluene + methyl acetate + methyl heptanoate) systems. Excess molar volumes, VE, isentropic compressibility, κs, isentropic compressibility deviations, Δκs, and changes of refractive index on mixing, ΔnD, for the above systems, have been calculated from experimental data and fitted to Cibulka, Singh et al., and Nagata and Sakura equations, standard deviations from the regression lines are shown. Geometrical solution models, Tsao and Smith, Kholer, Jacob and Fitzner, Rastogi et al. were also applied to predict ternary properties from binary contributions.  相似文献   

15.
Experimental values of density, refractive index and speed of sound of (hexane  +  cyclohexane  +  1-butanol) were measured at T =  298.15 K and atmospheric pressure. From the experimental data, the corresponding derived properties (excess molar volumes, changes of refractive index on mixing and changes of isentropic compressibility) were computed. Such derived values were correlated using several polynomial equations. Several empirical methods were used in the calculation of the properties of ternary systems from binary data. The Nitta–Chao group contribution model was applied to predict excess molar volume for this mixture.  相似文献   

16.
Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich–Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg–Nissan and McAllister equations for viscosities of mixtures have also been examined.  相似文献   

17.
Density, speed of sound, and refractive index for the binary systems (butanoic acid + propanoic acid, or 2-methyl-propanoic acid) were measured over the whole composition range and at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. The excess molar volumes, isentropic compressibilities, excess isentropic compressibilities, molar refractions, and deviation in refractive indices were also calculated by using the experimental densities, speed of sound, and refractive indices data, respectively. The Redlich–Kister smoothing polynomial equation was used to fit the excess molar volume, excess isentropic compressibility and deviation in refractive index data. The thermodynamic properties have been discussed in terms of intermolecular interactions between the components of the mixtures.  相似文献   

18.
This paper reports the results of a new experimental study of thermophysical properties for the ternary mixture of {diethyl carbonate + p-xylene + decane}. Surface tension has been measured at 298.15 K and, density and speed of sound have been measured in the temperature range T = (288.15 to 308.15) K. Excess molar volumes, excess isentropic compressibilities, and surface tension deviations, have been calculated from experimental data. Surface tension deviations have been correlated with Cibulka equation and Nagata and Tamura equation was used for the other excess properties. Good accuracy has been obtained. These excess magnitudes are discussed qualitatively in terms of the nature and type of intermolecular interactions of the components involved.  相似文献   

19.
The density and speed of sound of the ternary mixture (diethyl carbonate + p-xylene + octane) have been measured at atmospheric pressure and in the temperature range T = (288.15 to 308.15) K. Besides, surface tension has been also determined for the same mixture at T = 298.15 K. The experimental measurements have allowed the calculation of the corresponding derived properties: excess molar volumes, excess isentropic compressibilities, and surface tension deviations. Excess properties have been correlated using Nagata and Tamura equation and correlation for the surface tension deviation has been done with the Cibulka equation. Good accuracy has been obtained. Based on the variations of the derived properties values with composition, a qualitative discussion about the intermolecular interactions was drawn.  相似文献   

20.
Densities and kinematic viscosities have been measured for (1,2-ethanediol + 1-nonanol) over the temperature range from (298.15 to 313.15) K. The speeds of sound in those mixtures within the temperature range from (293.15 to 313.15) K have been measured as well. Using the measurement results, the molar volumes, isentropic compressibility coefficients, molar isentropic compressibilities, and the corresponding excess and deviation values (excess molar volumes, excess isentropic compressibility coefficients, excess molar isentropic compressibilities, differently defined deviations of the speed of sound, and dynamic viscosity deviations) were calculated. The excess Gibbs free energies estimated by the use of the UNIQUAC model are also reported. The excess molar volumes and Gibbs free energies are positive, whereas the compressibility excesses are s-shaped. The excess and deviation values are expressed by Redlich–Kister polynomials and discussed in terms of variations of the structure of the system caused by the participation of two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding. The effect of temperature is discussed. The predictive abilities of the McAllister equation for viscosities of the mixtures under test have also been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号