首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system, and optimized model parameters have been found. The (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model was used for the molten salt phase, and the (MgCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) solid solution was modeled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. Finally, the (Na,K)(Mg,Ca,Mn,Fe,Co,Ni)Cl3 and the (Na,K)2(Mg,Mn,Fe,Co,Ni)Cl4 solid solutions were modeled using the Compound Energy Formalism.  相似文献   

2.
(Liquid + liquid) equilibrium (LLE) data for the (water + butyric acid + dodecanol) ternary system have been determined experimentally at T = (298.2, 308.2 and 318.2) K. Complete phase diagrams were obtained by determining binodal curves and tie lines. The reliability of the experimental tie lines was confirmed by using the Othmer–Tobias correlation. The UNIFAC method was used to predict the phase equilibrium in the ternary system using the interaction parameters determined from experimental data of CH3, CH2, COOH, OH and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

3.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (LiF + NaF + KF + MgF2 + CaF2 + SrF2) system, and optimized model parameters have been found. The (LiF + NaF + KF + MgF2 + CaF2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary and ternary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model for short-range ordering was used for the molten salt phase, and the low-temperature and high-temperature (CaF2 + SrF2) solid solutions were modelled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. Finally, the (Li, Na, K)(Mg, Ca, Sr)F3 perovskite phase was modelled using the Compound Energy Formalism.  相似文献   

4.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system, and optimized model parameters have been found. The model parameters obtained for the binary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model was used for the molten salt phase, and the (MgCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) solid solution was modeled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. This is the first of two articles on the optimization of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system.  相似文献   

5.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases and relevant gaseous species of the (NaCl + KCl + MgCl2 + CaCl2 + ZnCl2) system, and optimized model parameters have been found. The (NaCl + KCl + MgCl2 + CaCl2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary and ternary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model for short-range ordering was used for the molten salt phase.  相似文献   

6.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases and relevant gaseous species of the (NaF + AlF3 + CaF2 + BeF2 + Al2O3 + BeO) system, and optimized model parameters have been found. The (NaF + AlF3 + CaF2 + Al2O3) subsystem, which is the base electrolyte used for the electro-reduction of alumina in Hall–Héroult cells, has been critically evaluated in a previous article. The Modified Quasichemical Model in the Quadruplet Approximation for short-range ordering was used for the molten salt phase. The thermodynamic database developed is a first step towards a quantitative study of the beryllium mass balance in an electrolysis cell. In particular, the predominant Be-containing species in the gas phase evolved at the anode were identified; and, for a given beryllium content of the alumina, the beryllium content of the electrolytic bath at steady state was assessed under several approximations.  相似文献   

7.
In this study the phase equilibrium behaviors of the binary system (CO2 + lauric acid) and the ternary system (CO2 + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO2 + lauric acid); (0.4616 to 0.9895) for the ternary system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.  相似文献   

8.
The application of semi-clathrate hydrate formation technology for gas separation purposes has gained much attention in recent years. Consequently, there is a demand for experimental data for relevant semi-clathrate hydrate phase equilibria. In this work, semi-clathrate hydrate dissociation conditions for the system comprising mixtures of {CO2 (0.151/0.399 mole fraction) + N2 (0.849/0.601 mole fraction) + 0.05, 0.15, and 0.30 mass fraction tetra-n-butylammonium bromide (TBAB)} aqueous solutions have been measured and are reported. An experimental apparatus which was designed and built in-house was used for the measurements using the isochoric pressure-search method. The range of conditions for the measurements was from 277.1 K to 293.2 K for temperature and pressures up to 16.21 MPa. The phase equilibrium data measured demonstrate the high hydrate promotion effects of TBAB aqueous solutions.  相似文献   

9.
The three-phase equilibrium conditions of ternary (hydrogen + tert-butylamine + water) system were first measured under high-pressure in a “full view” sapphire cell. The tert-butylamine–hydrogen binary hydrate phase transition points were obtained through determining the points of intersection of three phases (H–Lw–V) to two phases (Lw–V) experimentally. Measurements were made using an isochoric method. Firstly, (tetrahydrofuran + hydrogen) binary hydrate phase equilibrium data were determined with this method and compared with the corresponding experimental data reported in the literatures and the acceptable agreements demonstrated the reliability of the experimental method used in this work. The experimental investigation on (tert-butylamine + hydrogen) binary hydrate phase equilibrium was then carried out within the temperature range of (268.4 to 274.7) K and in the pressure range of (9.54 to 29.95) MPa at (0.0556, 0.0886, 0.0975, and 0.13) mole fraction of tert-butylamine. The three-phase equilibrium curve (H + Lw + V) was found to be dependent on the concentration of tert-butylamine solution. Dissociation experimental results showed that tert-butylamine as a hydrate former shifted hydrate stability region to lower pressure and higher temperature.  相似文献   

10.
In this work a thermodynamic assessment of the (LiF + NaF + CaF2 + LaF3) system is reported. For the thermodynamic modeling of the liquid phase, the classical polynomial model, and the modified quasi-chemical model were used in parallel and compared. The extrapolation to higher order systems was done according to the Toop mathematical formalism. Furthermore, differential-scanning calorimetry data of the ternary (LiF + CaF2 + LaF3), (NaF + CaF2 + LaF3), and the quaternary (LiF + NaF + CaF2 + LaF3) mixtures are presented. Good agreement between the experimental data and the thermodynamic assessment was obtained.  相似文献   

11.
The main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO2(1) + methanol(2)} and {CO2(1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO2(1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO2(1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO2(1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO2(1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR–WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR–WS presented the best performance.  相似文献   

12.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (NaNO3 + KNO3 + Na2SO4 + K2SO4) ternary reciprocal system, and optimised model parameters have been found. The model parameters obtained for the four binary common-ion subsystems (i.e. (NaNO3 + Na2SO4), (KNO3 + K2SO4), (NaNO3 + KNO3) and (Na2SO4 + K2SO4)) are used to predict thermodynamic properties and phase equilibria for the entire system. The Modified Quasichemical Model in the Quadruplet Approximation for short-range ordering was used for the molten salt phase, and the Compound Energy Formalism was used for the various solid solutions.  相似文献   

13.
In this work, new (vapor + liquid) equilibrium data for the (N2 + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure–composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N2 + n-heptane) system.  相似文献   

14.
(Liquid + liquid) equilibrium (LLE) data for ternary systems: (heptane + benzene + N-formylmorpholine), (heptane + toluene + N-formylmorpholine), and (heptane + xylene + N-formylmorpholine) have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer–Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and the non-random two liquids equation (NRTL) were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.  相似文献   

15.
The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na2SO4, K2SO4, (NH4)2SO4) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.  相似文献   

16.
A complete, critical evaluation of all phase diagrams and thermodynamic data was performed for all condensed phases of the (NaCl + Na2SO4 + Na2CO3 + KCl + K2SO4 + K2CO3) system, and optimized parameters for the thermodynamic solution models were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range order, where the cations (Na+ and K+) were assumed to mix on a cationic sublattice, while anions (CO32-,SO42-,andCl-) were assumed to mix on an anionic sublattice. The thermodynamic properties of the solid solutions of (Na,K)2(SO4,CO3) were modelled using the Compound Energy Formalism, and (Na,K)Cl was modelled using a substitutional model in previous studies. Phase transitions in the common-cation ternary systems (NaCl + Na2SO4 + Na2CO3) and (KCl + K2SO4 + K2CO3) were studied experimentally using d.s.c./t.g.a. The experimental results were used as input for evaluating the phase equilibrium in the common-cation ternary systems. The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature are reproduced within experimental error limits.  相似文献   

17.
《Fluid Phase Equilibria》2006,245(2):134-139
The vapor-hydrate equilibria were studied experimentally in detail for CH4 + C2H4 + tetrahydrofuran (THF) + water systems in the temperature range of 273.15–282.15 K, pressure range of 2.0–4.5 MPa, the initial gas–liquid volume ratio range of 45–170 standard volumes of gas per volume of liquid and THF concentration range of 4–12 mol%. The results demonstrated that, because of the presence of THF, ethylene was remarkably enriched in vapor phase instead of being enriched in hydrate phase for CH4 + C2H4 + water system. This conclusion is of industrial significance; it implies that it is feasible to enrich ethylene from gas mixture, e.g., various kinds of refinery gases or cracking gases in ethylene plant, by forming hydrate.  相似文献   

18.
《Fluid Phase Equilibria》2006,244(2):128-136
This work investigated the high-pressure phase behavior of systems containing glycerol, olive oil and propane in the presence of surfactant AOT. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data in the temperature range from 298 to 373 K, and pressures up to 30 MPa. First, the effect of addition of AOT on the vapor pressure of pure propane was investigated and then the effect of addition of AOT to mixtures of propane + glycerol. Measurements were afterwards accomplished for the system propane + AOT + glycerol + olive oil. For the ternary system liquid–liquid (LLE) and vapor–liquid–liquid (VLLE) equilibrium were observed. Besides VLE, LLE and VLLE, the quaternary system propane + AOT + glycerol + olive oil exhibited at higher concentrations of the glycerol/olive oil ratio a fascinating phase behavior, with the occurrence of three (LLL) and four (VLLL)—phases in equilibrium.  相似文献   

19.
An experimental study on metastable equilibria at T=288 K in the quinary system Li2CO3 + Na2CO3 + K2CO3 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O was done by isothermal evaporation method. Metastable equilibrium solubilities and densities of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram under the condition saturated with Li2CO3 was plotted, in which there are four invariant points; nine univariant curves; six fields of crystallization: K2CO3 · 3/2H2O, K2B4O7 · 5H2O, Li2B2O4 · 16H2O, Na2B2O4 · 8H2O, Na2CO3 · 10H2O, NaKCO3 · 6H2O. Some differences were found between the stable phase diagram at T=298 K and the metastable one at T=288 K.  相似文献   

20.
(Liquid + liquid equilibrium) (LLE) data for ternary system: (water + 2,3-butanediol + oleyl alcohol) has been measured at T = (300.2, 307.2, and 314.2) K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer–Tobias and Bachman methods. The nonrandom two liquids equation (NRTL) was used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that NRTL could give a good correlation for the LLE data. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号