首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general method is presented for the analytical solution of a piezoelectric screw dislocation located within one of two joined piezoelectric half-planes. The bonding along the half-plane is considered to be imperfect with the assumption that the imperfect interface is mechanically compliant and dielectrically weakly (or highly) conducting. For a mechanically compliant interface tractions are continuous but displacements are discontinuous across the imperfect interface. In this context, jumps in the displacement components are assumed to be proportional to their respective interface traction components. Similarly, for a dielectrically weakly conducting interface the normal electric displacement is continuous but the electric potential is discontinuous across the interface. The jump in electric potential is proportional to the normal electric displacement. In contrast, for a dielectrically highly conducting interface the electric potential is continuous across the interface whereas the normal electric displacement has a discontinuity across the interface which is proportional to a certain differential expression of the electric potential. Explicit expressions are derived for the complex field potentials. The results show that there are two dimensionless parameters measuring the interface “rigidity” as compared to one for the purely elastic case. When the imperfect interface is compliant and weakly conducting, the two dimensionless parameters can be positive real values or complex conjugates with positive real parts. When the imperfect interface is compliant and highly conducting the two dimensionless parameters can only be positive real values. An expression for the image force acting on the screw dislocation due to its interaction with a compliant and weakly conducting interface is also given. It is found that the image force is only dependent on two dimensionless generalized Dundurs constants as well as two dimensionless parameters measuring the interface “rigidity”.  相似文献   

2.
Two-dimensional(2D)equations for multiferroic(MF)laminated plates with imperfect interfaces are established in this paper.The interface between two adjacent sublayers,which are not perfectly bonded together,is modeled as a general spring-type layer.The mechanical displacements,and the electric and magnetic potentials of the two adjacent layers are assumed to be discontinuous at the interface.As an example,the influences of imperfect interfaces on the magnetoelectric(ME)coupling effects in an MF sandwich plate are investigated with the established 2D governing equations.Numerical results show that the imperfect interfaces have a significant impact on the ME coupling effects in MF laminated structures.  相似文献   

3.
I , the influence of applied load on the overall transverse mechanical properties of fiberreinforced composites with compliant interphases is examined from a micromechanical perspective. The composite is modeled by a regular hexagonal array of circular fibers in an infinite matrix. It is assumed that a thin reaction zone (intermolecular bonding at the fiber/matrix interface) establishes the bond between the fiber and matrix phases. The model of the present paper allows us to derive expressions for the overall elastic constants in the transverse plane as a function of applied load. The finite element method is used to evaluate these expressions, and the results are discussed.  相似文献   

4.
In this work, two-phase parallel fiber-reinforced periodic piezoelectric composites are considered wherein the constituents exhibit transverse isotropy and the cells have different configurations. Mechanical imperfect contact at the interface of the piezoelectric composites is studied via linear spring model. The statement of the problem for two-phase piezoelectric composites with mechanical imperfect contact is given. The local problems are formulated by means of the asymptotic homogenization method, and their solutions are found using complex variable theory. Analytical formulae are obtained for the effective properties of the composites with spring imperfect type of contact and different rhombic cells. Using the concept of a representative volume element (RVE), a finite element model is created, which combines the angular distribution of fibers and imperfect contact conditions (spring type) between the phases. Periodic boundary conditions are applied to the RVE, so that effective material properties can be derived. The fibers are distributed in such a way that the microstructure is characterized by a rhombic cell. The presented numerical homogenization technique is validated by comparing results with theoretical approach reported in the literature. Some studies of particular cases, numerical examples, and comparisons between the two aforementioned methods with other theoretical results illustrate that the model is efficient for the analysis of composites with presence of rhombic cells and the aforementioned imperfect contact.  相似文献   

5.
Interface imperfection can significantly affect the mechanical properties and failure mechanisms as well as the strength and toughness of nanocomposites. The elastic behavior of a screw dislocation in nanoscale coating with imperfect interface is studied in the three-phase composite cylinder model. The interface between inner nanoin- homogeneity and intermediate coating is assumed as perfectly bonded. The bonding between intermediate coating and outer matrix is considered to be imperfect with the assumption that interface imperfection is uniform, and a linear spring model is adopted to describe the weakness of imperfect interface. The explicit expression for image force acting on dislocation is obtained by means of a complex variable method. The analytic results indicate that inner interface effect and outer interface imperfection, simultaneously taken into account, would influence greatly image force, equilibrium position and stability of dislocation, and various critical parameters that would change dislocation stability. The weaker interface is a very strong trap for glide dislocation and, thus, a more effective barrier for slip transmission.  相似文献   

6.
The bending problem of a multiferroic rectangular plate with magnetoelectric coupling and imperfect interfaces is investigated via three-dimensional exact theory. A generalized spring layer model is proposed to characterize the imperfection of the bonding behavior at interfaces. In particular, the linear relation between the electric displacement and the jump of electric potential, the corresponding one for the magnetic field as well as linear relations among different physical fields are adopted. State space formulations are established, which, compared to the analysis for perfect laminates, only introduces a so-called interfacial transfer matrix. The present analysis can be readily used for the piezoelectric, piezomagnetic and elastic laminates by setting the proper material constants as zero. Numerical results are presented and discussed.  相似文献   

7.
A micromechanical model for effective elastic properties of particle filled acrylic composites with imperfect interfacial bonds is proposed. The constituents are treated as three distinct phases, consisting of agglomerate of particles, bulk matrix and interfacial transition zone around the agglomerate. The influence of the interfacial transition zone on the overall mechanical behavior of composites is studies analytically and experimentally. Test data on particle filled acrylic composites with three different interfacial properties are also presented. The comparison of analytical simulation with experimental data demonstrated the validity of the proposed micromechanical model with imperfect interface. Both the experimental results and analytical prediction show that interfacial conditions have great influence on the elastic properties of particle filled acrylic composites.  相似文献   

8.
李冉  万永平 《力学季刊》2019,40(4):740-752
本文研究了含非完整界面的功能梯度压电复合材料的Ⅲ型裂纹问题.此裂纹垂直于非完整界面,采用弹簧型力电耦合界面模型模拟非完整界面.界面两侧材料的性质,如弹性模量、压电常数和介电常数均假定呈指数函数形式且沿着裂纹方向变化.运用积分变换法将裂纹面条件转换为奇异积分方程,并使用Gauss-Chebyshev方法对其进行数值求解.根据算例结果讨论了一些退化问题并分析了裂纹尖端强度因子与材料的非均匀系数和非完整界面参数的关系.  相似文献   

9.
A binary composite is studied here, where the electroelastic properties of the constituent materials belong to the crystal class 622. A square arrangement of long continuous circular cylinders, the fiber phase, embedded in a homogeneous medium is consider here. The composite is in a state of antiplane shear piezoelectricity, that is, a coupled state of out-of-plane mechanical displacement and in-plane electric field, which is characterized by three electroelastic parameters: longitudinal shear modulus, shear stress piezoelectric coefficient and transverse dielectric constant. Our interest here lies in the determination of its effective properties. They are derived by means of the method of two spatial scales. Closed-form expressions are obtained for them. Only one of the four local (or canonical) problems that arise is needed. Two properties are thus found. The Milgrom–Shtrikman compatibility relation is used to fix the remaining one. The local problem is solved using potential methods of a complex variable. The solution involves doubly periodic Weierstrass elliptic and related functions. The final formulae for the overall properties show explicitly the dependence on (i) the properties of the phases, (ii) the radius of the cylindrical fiber and (iii) the lattice sums associated with the square array. The shear modulus is shown to depend explicitly not only on the rigidity of the phases but also on their piezoelectric and dielectric coefficients. Some natural organic substances have the symmetry 622 like collagen. Recently Silva et al. measured its electroelastic properties. Their data is used to show some numerical results of the derived formulae as a function of the fiber volumetric fraction.  相似文献   

10.
This paper studies the reflection and transmission of two dimensional quasi P wave incident at an imperfect interface between two dissimilar Functionally Graded Piezoelectric Materials (FGPM) half-spaces. The imperfect bonding behavior between the two considered half-spaces is described by the interfacial imperfections. The imperfection is characterized by the normal stiffness and tangential stiffness using the linear spring model. These interface parameters (i.e normal stiffness and tangential stiffness) are dependent on the elastic properties of interphase. Secular equations have been derived analytically for both the half-spaces. Different cases of imperfect interfaces namely perfect interface, slip interface, weak bonding interface and unbounded interface have been assumed and discussed. Influence of material gradients on the reflection and transmission coefficients (RTC’s) have been inflicted graphically for all the four considered interface conditions. Further, a comparative study of the RTC’s with respect to the incident angle has been carried out for the different cases of imperfections. The obtained results may be useful for measuring imperfection at the interface and designing of SAW devices.  相似文献   

11.
12.
We derive upper and lower bounds for the torsional rigidity of cylindrical shafts with arbitrary cross-section containing a number of fibers with circular cross-section. Each fiber may have different constituent materials with different radius. At the interfaces between the fibers and the host matrix two kinds of imperfect interfaces are considered: one which models a thin interphase of low shear modulus and one which models a thin interphase of high shear modulus. Both types of interface will be characterized by an interface parameter which measures the stiffness of the interface. The exact expressions for the upper and lower bounds of the composite shaft depend on the constituent shear moduli, the absolute sizes and locations of the fibers, interface parameters, and the cross-sectional shape of the host shaft. Simplified expressions are also deduced for shafts with perfect bonding interfaces and for shafts with circular cross-section. The effects of the imperfect bonding are illustrated for a circular shaft containing a non-centered fiber. We find that when an additional constraint between the constituent properties of the phases is fulfilled for circular shafts, the upper and lower bounds will coincide. In the latter situation, the fibers are neutral inclusions under torsion and the bounds recover the previously known exact torsional rigidity.   相似文献   

13.
This paper presents an exact solution for a simply-supported and laminated anisotropic cylindrical shell strip with imperfect bonding at the off-axis elastic layer interfaces and with attached anisotropic piezoelectric actuator and sensor subjected to transverse loading. In this research, the imperfect interface conditions are described in terms of linear relations between the interface tractions in the normal and tangential directions, and the respective discontinuities in displacements. The solution for an elastic (or piezoelectric) layer of the smart laminated cylindrical shell strip is obtained in terms of the six-dimensional (or eight-dimensional) pseudo-Stroh formalism, solution for multilayered system is then derived based on the transfer matrix method. Finally, a numerical example is presented to demonstrate the effect of imperfect interface on the static response of the smart laminated cylindrical shell. The derived solutions can serve as benchmark results to assess various approximate shell theories and numerical methods.  相似文献   

14.
The intrinsic coupling between the mechanical and the electric fields assigns a uniquefeature for the fracture in a piezoelectric solid. We model the kink of a crack by continuousdistribution of edge dislocations and electric dipoles. The problem admits an approach based onthe Stroh formalism. A set of coupled singular integral equations are derived for the dislocationand electric dipole density functions associated with a kinked crack. Numerical results indicatethat the crack tends to propagate in a straight line under a tensile stress and a positive electricfield. For a crack subjected to the mixed mode mechanical loading, a superimposed positiveelectric field tends to reduce the kink angle. The influence of the non-singular T-stress-chargeparallel to a crack is also investigated. It is shown that a transverse tensile stress or a positivetransverse electric field will lead to further deviation of the kinked crack from the crackextension line.  相似文献   

15.
Hydrodynamic phenomena in weakly conducting single-phase media due to interphase electric stresses are reviewed in [1]. In the present paper, a model is constructed of a dielectric suspension with body couples due to the field acting on free charges distributed on the surface of the particles of the suspension. Averaging of the microscopic fields yields macroscopic equations for the field and the polarization of the dielectric suspension with allowance for the finite relaxation time of the distribution of the free charge on the phase interface. The developed model is used to consider the occurrence of spontaneous rotation of a dielectric cylinder in a weakly conducting suspension in the presence of an electric field; compared with the case of single-phase media [2], this is characterized by a significant reduction in the threshold intensity of the electric field with increasing concentration of the particles [3]. In the present model of a dielectric suspension, the destabilization of the cylinder is due to the occurrence of rotations of the particles of the suspension due to the interaction between the polarization and the motion of the medium. The relaxation equation for the polarization for the given model is analogous to the corresponding equation for media which can be magnetized [4–6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 86–93, March–April, 1980.  相似文献   

16.
This paper considers the multi-field coupling in magneroelectroelastic composite materials consisting of the inclusion and the matrix are magnetoelectroelastic materials. The mechanical,electric and magnetic fields around an elliptical cylinder inclusion are formulated by complex potentials. Inside the inclusion,the strain,electric and magnetic fields are found to be uniform and vary with the shape of the ellipse. When the inclusion is reduced to a crack,along the interface,the strain,electric field strength and magnetic field strength equal the corresponding remote ones,which can be used as the boundary condition. Special cases,such as a rigid and permeable inclusion,a soft and impermeable inclusion,a line inclusion and a crack problem are discussed in detail.  相似文献   

17.
The paper analyzes the reflection and transmission of plane waves at an imperfect interface between piezoelectric (PE) and piezomagnetic (PM) media. The materials are assumed to be transversely isotropic. The linear spring model is used to describe the imperfection of bonding behavior at the interface. According to this model, the properties of the interface can be characterized by the normal and tangential interfacial stiffnesses. Numerial examples are performed for BaTiO3/CoFe2O4 material combination. Four cases, a perfect, slip, normal weak bonding and unbonding interfaces for the coupled quasi-pressure (QP) wave incidence from BaTiO3 medium are compared in detail. Numerical results of the reflection and transmission coefficients (RTCs) varying with incident angle for different interfacial stiffnesses are presented. Results show that the transmitted QP/reflected QSV waves are the strongest in the perfect/unbonded cases, respectively. The scattered waves in the slip and normal weak bonding cases are between those of the perfect and unbonded cases generally. Critial angles have noticeable effect on the RTCs and energy coefficients for the coupled scattered waves of the perfect and slip cases but have a little/no effect on those of the normal weak bonding/unbonded cases. It is found that the sum of the energy carried by the transmitted/reflected QP and QSV waves is less than unit for the imperfect bonding between BaTiO3/CoFe2O4 solids. These results may provide some useful reference datum for the imperfection measurment at the PE and PM interface.  相似文献   

18.
Summary  The electrohydrodynamic Kelvin–Helmholtz instability of the interface between two uniform superposed viscoelastic (B′ model) dielectric fluids streaming through a porous medium is investigated. The considered system is influenced by applied electric fields acting normally to the interface between the two media, at which there are no surface charges present. In the absence of surface tension, perturbations transverse to the direction of streaming are found to be unaffected by either streaming and applied electric fields for the potentially unstable configuration, or streaming only for the potentially stable configuration, as long as perturbations in the direction of streaming are ignored. For perturbations in all other directions, there exists instability for a certain wavenumber range. The instability of this system can be enhanced (increased) by normal electric fields. In the presence of surface tension, it is found also that the normal electric fields have destabilizing effects, and that the surface tension is able to suppress the Kelvin–Helmholtz instability for small wavelength perturbations, and the medium porosity reduces the stability range given in terms of the velocities difference and the electric fields effect. Finally, it is shown that the presence of surface tension enhances the stabilizing effect played by the fluid velocities, and that the kinematic viscoelasticity has a stabilizing as well as a destabilizing effect on the considered system under certain conditions. Graphics have been plotted by giving numerical values to the parameters, to depict the stability characteristics. Received 27 March 2000; accepted for publication 3 May 2001  相似文献   

19.
磁性斯格明子是在一些铁磁材料中存在的一种重要拓扑磁结构,由于其具有独特的磁-电-力-热多场耦合特性,在未来新型自旋电子器件中有着广泛的应用前景。然而,磁性斯格明子一般需要在外加磁场下才能稳定存在,极大地限制了其在自旋电子器件中的实际应用。本文基于实空间下磁电材料的相场模拟,发现铁电和铁磁复合薄膜中铁电斯格明子可以通过界面变形来稳定铁磁斯格明子。由于力电耦合效应,铁电层中铁电斯格明子的非均匀分布极化在界面产生周期性的非均匀界面变形。界面变形通过力磁耦合效应,使铁磁层中的磁性斯格明子在没有外加磁场的条件下能够稳定存在。本文的研究结果表明,基于磁电复合材料中的力-电-磁耦合效应,通过优化设计复合材料中不同组元的结构,可以实现拓扑磁结构的力学调控,从而为设计基于拓扑磁结构的新型自旋电子器件提供了新思路。  相似文献   

20.
Based on the complex variable method and perturbation technique, an analytical closed-form solution is derived for the interaction between a screw dislocation and collinear rigid lines along the interface of two dissimilar piezoelectric media under remote anti-plane mechanical and in-plane electrical loading. The rigid lines are either conducting or dielectric. The dislocation core is subjected to a line-force and a line-charge. A square-root singularity of field variables near the tip of an interfacial rigid line is observed. The rigid line extension force acting on the tip is obtained in terms of the strain and electric field intensity factor. The force on the dislocation due to the interfacial rigid line is calculated. The influence of the angular position of the dislocation, material properties and electromechanical coupling factor on the force is studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号