首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas-phase sintering kinetics of nickel nanoparticle agglomerates was investigated by a two step electrical mobility classification. The first electrostatic classifier sorted the agglomerated mono-area nickel nanoparticles generated by pulsed laser ablation, and then the subsequent heating process created the sintered nickel nanostructures. The second electrostatic classifier combined with the condensation nucleus counter scanned the shrinkage of the agglomerated mono-area nickel nanoparticles due to the sintering process. The change in the mono-area particle mobility size measured by the electrical mobility classification technique was compared with the results of the existing coalescence model to extract the kinetic parameters for the sintering of nickel particles. The optimum activation energy found in this study was ∼63 kJ/mol, which falls between the diffusion of nickel atoms (∼49 kJ/mol) and the migration and coalescence of nickel particles (∼78 kJ/mol).  相似文献   

2.
3.
Novel materials and a metallization technique for the printed electronics were studied. Insulator inks and conductive inks were investigated. For the conductive ink, the nano-sized copper particles were used as metallic sources. These particles were prepared from a copper complex by a laser irradiation process in the liquid phase. Nano-sized copper particles were consisted of a thin copper oxide layer and a metal copper core wrapped by the layer. The conductive ink showed good ink-jettability. In order to metallize the printed trace of the conductive ink on a substrate, the atomic hydrogen treatment was carried out. Atomic hydrogen was generated on a heated tungsten wire and carried on the substrate. The temperature of the substrate was up to 60 °C during the treatment. After the treatment, the conductivity of a copper trace was 3 μΩ cm. It was considered that printed wiring boards can be easily fabricated by employing the above materials.  相似文献   

4.
《Current Applied Physics》2010,10(3):797-800
Chitosan is regarded as one of the potential candidates as a gene carrier. However, the poor solubility of chitosan is the major limiting factor in its utilization as a gene carrier. The purpose of this study was to simplify the method of preparing the nanoparticles of chitosan linked with antisense oligonucleotide (asON). The main step was preparing the derivatives of chitosan phosphate (CSP) in order to easily dissolve in aqueous solution. The nanoparticles were formed using a simple mixed method for CSP and asON, and the nanoparticle’s forming condition was optimized so that the nanoparticle’s characterization could be examined. Results showed that it was simple to make the nanoparticles under the optimal condition of 2:1 M proportion of CSP and asON. The size of the nanoparticles was 102.6 ± 12.0 nm, its zeta potential was 1.45 ± 1.75, and the encapsulated ratio of the chitosan crosslinked the asON was 87.6 ± 3.5%. The infrared spectra and electron microscope displayed that chitosan may combine with the asON to form equirotal nanoparticles. In conclusion, it was simple and feasible to form chitosan nanoparticles for asON using the CSP, and the CSP can efficiently encapsulate asON.  相似文献   

5.
Nanocrystalline tin oxide (SnO2) powders were synthesized through wet chemical route using tin metal as precursor. The morphology and optical properties, as well as the effect of sintering on the structural attributes of SnO2 particles were analyzed using Transmission electron microscopy (TEM), UV–visible spectrophotometry (UV–vis) and X-ray diffraction (XRD), respectively. The data revealed that the lattice strain plays a significant role in determining the structural properties of sintered nanoparticles. The particle size was found to be 5.8 nm, 19.1 nm and 21.7 nm for samples sintered at 300 °C, 500 °C, and 700 °C, respectively. Also, the band gaps were substantially reduced from 4.1 eV to 3.8 eV with increasing sintering temperatures. The results elucidated that the structural and optical properties of the SnO2 nanoparticles can be easily modulated by altering sintering temperature during de novo synthesis.  相似文献   

6.
Graphic printing inks respond in different ways when they are in the wavelengths of a near infrared (IR) area. It is not possible to measure such response in the IR and describe it with parameters from the CIELab, sRGB or HSB color systems that are the base for color theory in the visible spectrum area. Additive RGB colors that we use to describe the image in our eye correspond with subtractive C0M0Y0 printing inks used for nearly overall printing reproduction in the overall color visual spectrum. Adding of black color ink that has a good response in the infrared area, and subtracting CMY inks makes it possible to carry out each color tone in an endless number of ways. CMYK printing ink characteristics are the basis for setting the algorithm for double appearance of independent graphics: the first graphic in daylight and the second “IR graphic” in infrared light. Proposed algorithm creates a print X on the base of two pictures: the original one X0 and mask F. The aim is documents’ ultimate security which is detected in IR area. Graphic element visibility with the help of instruments in the wavelength area from 700 to 1000 nm allows programming the selection of image information by using process inks only. The individual characteristics of those printing inks are used for introducing a new criteria in the RGB/CMYK separation process with the goal to create IR graphics. We call this separation CMYKIR and use it for planning the dosing of inks in the creation of good quality reproductions with incorporated IR characteristics: either for causing or prohibiting the IR effect. The goal of CMYKIR reproduction is to incorporate the set “IR graphic” that is not meant to be detected in the visible spectrum part.  相似文献   

7.
《Current Applied Physics》2020,20(7):853-861
Among the conventional metallic inks used in the printing process, silver exhibits high conductivity and thermal stability. Nevertheless, due to the high cost of silver, it cannot be extensively used for the fabrication of inks. As a competitive alternative, copper can be considered as a substitute for silver; however, copper ink oxidizes under certain atmospheric conditions. To meet these shortcomings, a cost effective, highly conductive, and oxidation-free copper-based ink has been synthesized in this study, wherein, oxidation of the copper particles in the copper-based ink was prevented by using copper complexes. The copper ink thus fabricated was printed on chemically treated Si/SiO2 substrates followed by the characterization of the printed copper films. The results of this study confirmed that the synthesized copper ink exhibited properties suitable for its use in the inkjet printing process for fabrication of various electronic devices.  相似文献   

8.
The influence of temperature on an ultrasound-assisted ink removal process has been investigated. White copy paper was evenly soaked in black writing ink. After drying the paper to constant weight at 75 °C, ink removal was attempted under varying conditions. Results were assessed by monitoring the UV–vis absorbance of the aqueous phase and measuring the brightness of the paper. Sonication was observed to improve the brightness of the paper in the temperature range of 15–45 °C with an optimum effect at 35 °C. Monitoring UV–vis spectra of the aqueous phase provided evidence that modification of the chemical structure of the ink desorbed from the paper occured. Further investigation under the same conditions showed that ink, when not absorbed on paper, did not undergo the same chemical change. This supports the hypothesis that only the compound released from the ink absorbed onto the paper is sensitive to sonodegradation. One possible explanation is that the metal binding component of the ink stays absorbed on the paper, releasing the organic part, whose chemical structure can be altered by the effect of sonication. Inductively coupled plasma analysis was used to confirm that during the de-inking process of the paper, the metal binding component stays absorbed on the paper and only the organic part is released in the aqueous phase.  相似文献   

9.
A sonochemical method has been developed to synthesize shear thickening fluid. This shear thickening fluid (STF) is composed of hard silicon dioxide nanoparticles and polyethylene glycol (PEG) liquid polymer. The combination of flow-able and hard components at a particular composition, results a material with remarkable rheological properties that is suitable for liquid body armor applications. In the present study nine types of STF’s have been synthesized with two different types of silica nanoparticles (15 nm and 200 nm) and polyethylene glycol at various weight fractions using a high intensity ultrasonic irradiation. The resultant STF samples were tested for their rheological and thermal properties. The advantages and disadvantages of this process have been discussed.  相似文献   

10.
Magnetic FeCo nanoparticles with high saturation magnetization (Ms = 148 emu/g) at 15 kOe were prepared by a coprecipitation route. The value of Ms for FeCo nanoparticles depends on the ratio of Fe to Co components. The size of the nanoparticles was confirmed by transmission electron microscopy (TEM) images, and morphology of the nanoparticles was obtained by field emission scanning electron microscopy (FE-SEM) images. The crystal structure of the nanoparticles dependent on annealing was characterized by X-ray diffraction data. The magnetic properties were characterized by saturation magnetization from a hysteresis loop by VSM.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(4):1570-1577
A rapid in situ biosynthesis of gold nanoparticles (AuNPs) is proposed in which a geranium (Pelargonium zonale) leaf extract was used as a non-toxic reducing and stabilizing agent in a sonocatalysis process based on high-power ultrasound. The synthesis process took only 3.5 min in aqueous solution under ambient conditions. The stability of the nanoparticles was studied by UV–Vis absorption spectroscopy with reference to the surface plasmon resonance (SPR) band. AuNPs have an average lifetime of about 8 weeks at 4 °C in the absence of light. The morphology and crystalline phase of the gold nanoparticles were characterized by transmission electron microscopy (TEM). The composition of the nanoparticles was evaluated by electron diffraction and X-ray energy dispersive spectroscopy (EDS). A total of 80% of the gold nanoparticles obtained in this way have a diameter in the range 8–20 nm, with an average size of 12 ± 3 nm. Fourier transform infrared spectroscopy (FTIR) indicated the presence of biomolecules that could be responsible for reducing and capping the biosynthesized gold nanoparticles. A hypothesis concerning the type of organic molecules involved in this process is also given. Experimental design linked to the simplex method was used to optimize the experimental conditions for this green synthesis route. To the best of our knowledge, this is the first time that a high-power ultrasound-based sonocatalytic process and experimental design coupled to a simplex optimization process has been used in the biosynthesis of AuNPs.  相似文献   

12.
The effect of sintering temperature on ZnO varistor properties is investigated in the range of 700–1400 °C. The increase of sintering temperature does not influence the well-known peaks related to hexagonal wurtzite structure of ZnO ceramics, whereas the average grain size is increased from (1.08 to 2.1 μm). With increasing sintering temperature up to 1200 °C, the nonlinear region is clearly observed in the I–V characteristics, whereas this region is completely absent only for the sample sintered at 1400 °C. As the sintering temperature increased, the breakdown field decreased over a wide range from 2838.7 to 6.41 V/cm, while the nonlinear coefficient is increased in the range of (23.86–47.76). Furthermore, the barrier height decreased from 1.76 to 0.974 eV, whereas electrical conductivity is improved. On the other hand, the optical band gap is gradually decreased in the range of 3.08–2.70 eV with increasing sintering temperature. These results showed a strong correlation between sintering temperature and the properties of ZnO ceramic varistor.  相似文献   

13.
We report on the structural, magnetic, and magnetotransport characteristics of Cr-doped indium tin oxide (ITO) films grown on SiO2/Si substrates by pulsed laser deposition. Structural analysis clearly indicates that homogeneous films of bixbyite structure are grown without any detectable formation of secondary phases up to 20 mol% Cr doping. The carrier concentration is found to decrease with Cr ion addition, displaying a change in the conduction type from n-type to p-type around 15 mol% Cr doping. Room temperature ferromagnetism is observed, with saturation magnetization of ∼0.7 emu/cm3, remnant magnetization of ∼0.2 emu/cm3 and coercive field of ∼30 Oe for 5 mol% Cr-doped ITO. Magnetotransport measurements reveal the unique feature of diluted magnetic semiconductors, in particular, an anomalous Hall effect governed by electron doping, which indicates the intrinsic nature of ferromagnetism in Cr-doped ITO. These results suggest that Cr-doped ITO could be promising for semiconductor spin electronics devices.  相似文献   

14.
Yttria–zirconia doped ceria, 10% ZrO2–10% Y2O3–CeO2 (mol%) (CZY) and 0.5 mol% alumina-doped CZY (CZYA), prepared through oxide mixture process, were sintered by isothermal sintering (IS) and two-step sintering (TSS) having as variable the temperature and soaking time. The electrical conductivity of sintered samples was investigated in the 250 to 600 °C temperature range by impedance spectroscopy in air atmosphere. The microstructure was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Alumina, as additive, improves the grain boundary conductivity of samples sintered at temperatures lower than 1500 °C. Concerning the sintering mode, two-step sintering (TSS) proved to be a good procedure to obtain CZYA samples with high electrical conductivity and density (> 95%) at relatively low sintering temperature and long soaking time.  相似文献   

15.
《Current Applied Physics》2010,10(3):853-857
Silver nanowires of 50–190 nm in diameters along with silver nanoparticles in the size range of 60–200 nm in prismatic and hexagonal shapes are synthesized through chemical process. The lengths of the silver nanowires lie between 40 and 1000 μm. The characterizations of the synthesized samples are done by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–visible absorption spectroscopy. The syntheses have been done by using two processes. In the first process, relatively thicker and longer silver nanowires are synthesized by a soft template liquid phase method at a reaction temperature of 70 °C with methanol as solvent. In the second process, thinner silver nanowires along with silver nanoparticles are prepared through a polymer mediated polyol process at a reaction temperature of 210 °C with ethylene glycol as solvent. The variations of photoluminescence (PL) emission from the silver nanocluster dispersed in methanol as well as in ethylene glycol are recorded at room temperature under excitation wavelengths lying in between 300 and 414 nm. The blue–green PL emission is observed from the prepared samples and these emissions are assigned to radiative recombination of Fermi level electrons and sp- or d-band holes.  相似文献   

16.
One of the technologically most important requirements for the application of oxide-supported metal nanoparticles (NPs) in the fields of molecular electronics, plasmonics, and catalysis is the achievement of thermally stable systems. For this purpose, a thorough understanding of the different pathways underlying thermally-driven coarsening phenomena, and the effect of the nanoparticle synthesis method, support morphology, and degree of support reduction on NP sintering is needed. In this study, the sintering of supported metal NPs has been monitored via scanning tunneling microscopy combined with simulations following the Ostwald ripening and diffusion-coalescence models. Modifications were introduced to the diffusion-coalescence model to incorporate the correct temperature dependence and energetics. Such methods were applied to describe coarsening phenomena of physical-vapor deposited (PVD) and micellar Pt NPs supported on TiO2(110). The TiO2(110) substrates were exposed to different pre-treatments, leading to reduced, oxidized and polymer-modified TiO2 surfaces. Such pre-treatments were found to affect the coarsening behavior of the NPs.No coarsening was observed for the micellar Pt NPs, maintaining their as-prepared size of ~ 3 nm after annealing in UHV at 1060 °C. Regardless of the initial substrate pre-treatment, the average size of the PVD-grown NPs was found to increase after identical thermal cycles, namely, from 0.5 ± 0.2 nm to 1.0 ± 0.3 nm for pristine TiO2, and from 0.8 ± 0.3 nm to 1.3 ± 0.6 nm for polymer-coated TiO2 after identical thermal treatments. Although no direct real-time in situ microscopic evidence is available to determine the dominant coarsening mechanism of the PVD NPs unequivocally, our simulations following the diffusion-coalescence coarsening route were in significantly better agreement with the experimental data as compared to those based on the Ostwald-ripening model. The enhanced thermal stability of the micellar NPs as compared to the PVD clusters might be related to their initial larger NP size, narrower size distribution, and larger interparticle distances.  相似文献   

17.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

18.
《Current Applied Physics》2010,10(3):934-941
The aggregation and sedimentation of nanoparticles in nanofluid have significant influences on the stability and applicability of nanofluids. The objective of this study is to propose a model to predict the nanoparticles’ aggregation and sedimentation characteristics. The characteristics are evaluated by the concentration of nanoparticles in nanofluid at different time. The concentration of nanoparticles can be calculated according to the speed and location of each nanoparticle. Then, the speed and location of each nanoparticle can be yielded when the forces on each nanoparticle are determined. For the forces on nanoparticles are related to the space structure of nanoparticle clusters, the clusters’ space structures are simulated. Case study shows that the mean deviation of predicted nanoparticle concentration from experimental data for Fullerence + H2O, Fullerence + Oil and CuO + Oil nanofluids are 25%, 16% and 13%, respectively. The model can provide quantitative prediction of the aggregation and sedimentation characteristics of nanoparticles in nanofluid.  相似文献   

19.
This paper reports sintering condition effect on an ink-jet printed conductive pattern of silver ink made on a cellulose paper. To fabricate the conductive pattern on the cellulose paper, silver ink is ink-jet printed and the influence of sintering temperature and time is investigated in terms of electrical resistivity and morphology by using scanning electron microscope and atomic force microscope. Two-level baking process composed of soft baking and hard baking is found to be effective for silver nanoparticle network. The sintering temperature and time are strongly associated with the conductivity of the ink-jet printed pattern.  相似文献   

20.
Formulating highly stable graphene-based conductive inks with consistency in electrical properties over the storage period has remained a significant challenge in the development of wearable electronics. Two highly stable graphene-based inks (Cyclohexanone:Ethylene glycol (CEG) ink and Cyclohexanone:Terpineol (CT) ink) are prepared by using two different organic binary solvents, for the first time, without using solvent exchange methods. Both the inks display remarkably high stability (stable even after two months) with negligible variability in electrical properties. Here, it is demonstrated how such inks can be utilized to coat flexible substrates to create wearable e-textiles. Both the inks coated e-textiles show significantly low sheet resistance (≈209.1 Ω □−1 for CEG ink and ≈322.4 Ω □−1 CT ink) that show less than a 15% increase in electrical resistance over two months. Therefore, these inks offer high productivity and reproducibility and can be one of the most effective methods for formulating graphene-based inks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号