共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam 总被引:1,自引:0,他引:1
This study presents a novel resonant fuzzy logic controller (FLC) to minimize structural vibration using collocated piezoelectric actuator/sensor pairs. The proposed fuzzy controller increases the damping of the structures to minimize certain resonant responses. The vibration absorber is first experimentally examined by a cantilever beam test bed for impulse and near-resonant excitation cases. Moreover, the effectiveness of the new fuzzy control design to a state-of-the-art control scheme is compared through the experimental studies. The experimental results indicate the proposed controller is highly promising for this application field. Our results further demonstrate that the fuzzy approach is much better than traditional control methods. In summary, a novel vibration absorption scheme using fuzzy logic has been demonstrated to significantly enhance the performance of a flexible structure with resonant response. 相似文献
4.
5.
6.
Due to the frequency-energy dependence of nonlinear oscillations, nonlinear dynamical absorbers present interesting properties for mitigating unwanted vibrations in mechanical systems. Unlike the tuned mass damper, the functional form of a nonlinear absorber is not known a priori and must be determined. This short note addresses this issue when a light-weight nonlinear absorber is attached to a nonlinear primary structure. Numerical simulations demonstrate that the determination of an adequate functional form may be directly linked to the frequency-energy dependence of the primary structure. 相似文献
7.
This paper presents nonlinear vibration analysis of a curved beam subject to uniform base harmonic excitation with both quadratic and cubic nonlinearities. The Galerkin method is employed to discretize the governing equations. A high-dimensional model that can take nonlinear model coupling into account is derived, and the incremental harmonic balance (IHB) method is employed to obtain the steady-state response of the curved beam. The cases investigated include softening stiffness, hardening stiffness and modal energy transfer. The stability of the periodic solutions for given parameters is determined by the multi-variable Floquet theory using Hsu's method. Particular attention is paid to the anti-symmetric response with and without excitation, as the excitation frequency is close to the first and third natural frequencies of the system. The results obtained with the IHB method compare very well with those obtained via numerical integration. 相似文献
8.
In this article, the H∞ optimization design of a hybrid vibration absorber (HVA), including both passive and active elements, for the minimization of the resonant vibration amplitude of a single degree-of-freedom (sdof) vibrating structure is derived by using the fixed-points theory. The optimum tuning parameters are the feedback gain, the tuning frequency, damping and mass ratios of the absorber. The effects of these parameters on the vibration reduction of the primary structure are revealed based on the analytical model. Design parameters of both passive and active elements of the HVA are optimized for the minimization of the resonant vibration amplitude of the primary system. One of the inherent limitations of the traditional passive vibration absorber is that its vibration absorption is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The proposed HVA overcomes this limitation and provides very good vibration reduction performance even at a low mass ratio. The proposed optimized HVA is compared to a recently published HVA designed for similar propose and it shows that the present design requires less energy for the active element of the HVA than the compared design. 相似文献
9.
In a high-power glass laser the non-linear refractive index, n2, is responsible for the small-scale self-focussing and presents a physical limitation. So any reduction of n2 would be very beneficial and can draw back this limitation. The use of circularly polarized light brings about a simple way of reducing n2. 相似文献
10.
The effect of grazing mean flow on acoustical characteristics of the micro-perforated panel absorber
There are three effects of grazing mean flow on acoustical characteristics of the micro-perforated panel absorber(1) on radiation impedance of the orifice,(2) on acoustical impedance of the construction at sound wave angle incidence,(3) on sound propagation property in a duct lined by absorber.Based on the acoustical fundamental principle,these effects were analyzed respectively,and relative formulas were derived. Some qualitative tendencies were shown that radiation impedance of an orifice,value ofξin function coth(ξ) which estimates cavity impedance,and transmission loss in a lined duct all will decrease with flow speed increases as well as the resonant frequency will move to lower frequency caused by Doppler Effect,when sound wave propagation direction is the same with flow direction. The discussion was also supported by a relative experimental study. 相似文献
11.
12.
A design method is proposed to suppress stationary random vibration in flexible structures using a hybrid vibration absorber (HVA). While the traditional vibration absorber can damp down the vibration mainly at the pre-tuned mode of the primary structure, active damping is generated by the proposed HVA to damp down all resonant modes of interest of the vibrating structure and the spatial average mean square motion of the vibrating structure can be minimized. Only one absorber and one feedback signal are required to achieve global vibration suppression of a flexible structure under stationary random excitation. A special pole-placement controller is designed such that all vibration modes of the flexible structures become critically damped. It is proved analytically that the proposed HVA damps the vibration of the entire structure instead of just the attachment point of the absorber. The proposed optimized HVA is tested on a beam structure and it shows a superior performance on global suppression of broadband vibration in comparison to other published designs of passive and hybrid vibration absorbers. 相似文献
13.
The non-linear vibration of a clamped-clamped beam at large displacement amplitudes is examined in this work. Complementary theoretical and experimental studies have been carried out to examine the amplitude dependence of the fundamental mode shape and its derivatives and the spatially-dependent harmonic distortion of the transverse displacement which occurs at large deflections. 相似文献
14.
15.
16.
17.
18.
The common practice in developing a locking-free curved beam element is to ensure that its interpolation functions of displacement explicitly satisfy the inextensible bending mode condition for the membrane locking-free instead of the rigid body modes. In this paper, we study the impact of this practice on the dynamic characteristics of a finite element by conducting vibration analysis using our newly developed three-node locking-free curved beam element. In this case, the inextensible bending mode condition is satisfied explicitly, while the rigid body modes are satisfied implicitly to 4th-order accuracy. Numerical and experimental examples show that with the newly developed curved beam element, developed by using the implicit representation of a rigid body mode condition, it is possible to recover the rigid body modes of curved beams with low and medium slenderness ratios. This is even true for cases involving a half-circular element and the vibration of the curved beam is predicted with high accuracy. 相似文献
19.
H. Yamaguchi 《Journal of sound and vibration》1985,103(3):417-425
The effectiveness of the dynamic vibration absorber which consists of a double-cantilever viscoelastic beam and a spring-viscous damper is studied. The absorber is attached to the centre of the main beam. The ends of the main beam are built in and excited sinusoidally by the base motion. In the numerical example, the displacement transmissibility, i.e., the ratio of the displacement at the centre of the main beam to that of the base, is investigated. Variations of the resonant peaks are shown when the absorber parameters are changed. Values of the optimum tuning design parameters are presented, and it is verified that two of the main beam resonances are optimized simultaneously. 相似文献
20.
Microperforated panel (MPP) absorbers are promising as a basis for the next-generation of sound absorbing materials. MPPs are typically made of a thin metal or plastic panel. However, thin limp panels are generally not suitable as an interior finish of room walls because they do not have sufficient strength, which prevents practical application of MPPs as an interior finish of room walls. In order to overcome the lack of appropriate strength required for room walls, it is possible to make an MPP out of a thick panel. However, thick MPPs are usually not efficient because the resistance and/or reactance become too high. In this study, trial production of thick MPPs and measurement of their normal absorption coefficients were carried out. Results show that efficient absorption can be given with a thick MPP by using a tapered perforation. 相似文献