首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 971 毫秒
1.
We analyze the extent to which a quantum universal enveloping algebra of a Kac–Moody algebra gg is defined by multidegrees of its defining relations. To this end, we consider a class of character Hopf algebras defined by the same number of defining relations of the same degrees as the Kac–Moody algebra gg. We demonstrate that if the generalized Cartan matrix AA of gg is connected then the algebraic structure, up to a finite number of exceptional cases, is defined by just one “continuous” parameter qq related to a symmetrization of AA, and one “discrete” parameter mm related to the modular symmetrizations of AA. The Hopf algebra structure is defined by n(n−1)/2n(n1)/2 additional “continuous” parameters. We also consider the exceptional cases for Cartan matrices of finite or affine types in more detail, establishing the number of exceptional parameter values in terms of the Fibonacci sequence.  相似文献   

2.
3.
4.
5.
Let G=(V,E)G=(V,E) be a graph. A subset D⊆VDV is a dominating set if every vertex not in DD is adjacent to a vertex in DD. A dominating set DD is called a total dominating set if every vertex in DD is adjacent to a vertex in DD. The domination (resp. total domination) number of GG is the smallest cardinality of a dominating (resp. total dominating) set of GG. The bondage (resp. total bondage) number of a nonempty graph GG is the smallest number of edges whose removal from GG results in a graph with larger domination (resp. total domination) number of GG. The reinforcement (resp. total reinforcement) number of GG is the smallest number of edges whose addition to GG results in a graph with smaller domination (resp. total domination) number. This paper shows that the decision problems for the bondage, total bondage, reinforcement and total reinforcement numbers are all NP-hard.  相似文献   

6.
Let R(G)R(G) be the graph obtained from GG by adding a new vertex corresponding to each edge of GG and by joining each new vertex to the end vertices of the corresponding edge, and Q(G)Q(G) be the graph obtained from GG by inserting a new vertex into every edge of GG and by joining by edges those pairs of these new vertices which lie on adjacent edges of GG. In this paper, we determine the Laplacian polynomials of R(G)R(G) and Q(G)Q(G) of a regular graph GG; on the other hand, we derive formulae and lower bounds of the Kirchhoff index of these graphs.  相似文献   

7.
8.
Let (X,d)(X,d) be a metric space endowed with a graph GG such that the set V(G)V(G) of vertices of GG coincides with XX. We define the notion of GG-Reich type maps and obtain a fixed point theorem for such mappings. This extends and subsumes many recent results which were obtained for other contractive type mappings on ordered metric spaces and for cyclic operators.  相似文献   

9.
10.
Let gg be a finite dimensional complex simple classical Lie superalgebra and A   be a commutative, associative algebra with unity over CC. In this paper we define an integral form for the universal enveloping algebra of the map superalgebra g⊗AgA, and exhibit an explicit integral basis for this integral form.  相似文献   

11.
Brooks’ theorem is a fundamental result in the theory of graph coloring. Catlin proved the following strengthening of Brooks’ theorem: Let dd be an integer at least 3, and let GG be a graph with maximum degree dd. If GG does not contain Kd+1Kd+1 as a subgraph, then GG has a dd-coloring in which one color class has size α(G)α(G). Here α(G)α(G) denotes the independence number of GG. We give a unified proof of Brooks’ theorem and Catlin’s theorem.  相似文献   

12.
A subset S⊆VSV in a graph G=(V,E)G=(V,E) is a [j,k][j,k]-set if, for every vertex v∈V?SvV?S, j≤|N(v)∩S|≤kj|N(v)S|k for non-negative integers jj and kk, that is, every vertex v∈V?SvV?S is adjacent to at least jj but not more than kk vertices in SS. In this paper, we focus on small jj and kk, and relate the concept of [j,k][j,k]-sets to a host of other concepts in domination theory, including perfect domination, efficient domination, nearly perfect sets, 2-packings, and kk-dependent sets. We also determine bounds on the cardinality of minimum [1, 2]-sets, and investigate extremal graphs achieving these bounds. This study has implications for restrained domination as well. Using a result for [1, 3]-sets, we show that, for any grid graph GG, the restrained domination number is equal to the domination number of GG.  相似文献   

13.
In this paper, we establish an oscillation estimate of nonnegative harmonic functions for a pure-jump subordinate Brownian motion. The infinitesimal generator of such subordinate Brownian motion is an integro-differential operator. As an application, we give a probabilistic proof of the following form of relative Fatou theorem for such subordinate Brownian motion XX in a bounded κκ-fat open set; if uu is a positive harmonic function with respect to XX in a bounded κκ-fat open set DD and hh is a positive harmonic function in DD vanishing on DcDc, then the non-tangential limit of u/hu/h exists almost everywhere with respect to the Martin-representing measure of hh.  相似文献   

14.
Let us fix a function f(n)=o(nlnn)f(n)=o(nlnn) and real numbers 0≤α<β≤10α<β1. We present a polynomial time algorithm which, given a directed graph GG with nn vertices, decides either that one can add at most βnβn new edges to GG so that GG acquires a Hamiltonian circuit or that one cannot add αnαn or fewer new edges to GG so that GG acquires at least e−f(n)n!ef(n)n! Hamiltonian circuits, or both.  相似文献   

15.
Let kk be any field, GG be a finite group acting on the rational function field k(xg:g∈G)k(xg:gG) by h⋅xg=xhghxg=xhg for any h,g∈Gh,gG. Define k(G)=k(xg:g∈G)Gk(G)=k(xg:gG)G. Noether’s problem asks whether k(G)k(G) is rational (= purely transcendental) over kk. A weaker notion, retract rationality introduced by Saltman, is also very useful for the study of Noether’s problem. We prove that, if GG is a Frobenius group with abelian Frobenius kernel, then k(G)k(G) is retract kk-rational for any field kk satisfying some mild conditions. As an application, we show that, for any algebraic number field kk, for any Frobenius group GG with Frobenius complement isomorphic to SL2(F5)SL2(F5), there is a Galois extension field KK over kk whose Galois group is isomorphic to GG, i.e. the inverse Galois problem is valid for the pair (G,k)(G,k). The same result is true for any non-solvable Frobenius group if k(ζ8)k(ζ8) is a cyclic extension of kk.  相似文献   

16.
We extend some known results on radicals and prime ideals from polynomial rings and Laurent polynomial rings to ZZ-graded rings, i.e, rings graded by the additive group of integers. The main of them concerns the Brown–McCoy radical GG and the radical SS, which for a given ring AA is defined as the intersection of prime ideals II of AA such that A/IA/I is a ring with a large center. The studies are related to some open problems on the radicals GG and SS of polynomial rings and situated in the context of Koethe’s problem.  相似文献   

17.
18.
19.
The relationships between the generalized directional derivative of the distance function and the existence of nearest points as well as some geometry properties in Banach spaces are studied. It is proved in the present paper that the condition that for each closed subset GG of XX and x∈X?GxX?G, the Clarke, Michel-Penot, Dini or modified Dini directional derivative of the distance function is 1 or −1 implying the existence of the nearest points to xx from GG is equivalent to XX being compactly locally uniformly convex. Similar results for uniqueness of the nearest point are also established.  相似文献   

20.
Let GG be a group. Any GG-module MM has an algebraic structure called a GG-family of Alexander quandles. Given a 2-cocycle of a cohomology associated with this GG-family, topological invariants of (handlebody) knots in the 3-sphere are defined. We develop a simple algorithm to algebraically construct nn-cocycles of this GG-family from GG-invariant group nn-cocycles of the abelian group MM. We present many examples of 2-cocycles of these GG-families using facts from (modular) invariant theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号