首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transthyretin (TTR), a plasma protein with a tetramer structure, could form amyloid fibril associated with several human diseases through the dissociation of tetramer and the misfolding of monomer. These amyloidogenesis can be inhibited by small molecules which bind to the central channel of TTR. A number of small molecules like 2-arylbenzoxazoles (ABZ) analogues are proposed as promising therapeutic strategy to treat amyloidosis. In this work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies were performed on series of 2-arylbenzoxazoles (ABZ) and linker-Y analogues to investigate the inhibitory activities of TTR amyloidogenesis at atomic level. Significant correlation coefficients for ABZ series (CoMFA, r 2 = 0.877, q 2 = 0.431; CoMSIA, r 2 = 0.836, q 2 = 0.447) and those for linker-Y series (CoMFA, r 2 = 0.828, q 2 = 0.522; CoMSIA, r 2 = 0.800, q 2 = 0.493) were obtained, and the generated models were validated using test sets. In addition, docking studies on 6 compounds binding to TTR were performed to analyze the forward or reverse binding mode and interactions between molecules and TTR. These results from 3D-QSAR and docking studies have great significance for designing novel TTR amyloidogenesis inhibitors in the future.  相似文献   

2.
Checkpoint kinase 1 (Chk1) is a promising target for the design of novel anticancer agents. In the present work, molecular docking simulations and three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed on pyridyl aminothiazole derivatives as Chk1 inhibitors. AutoDock was used to determine the probable binding conformations of all the compounds inside the active site of Chk1. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were developed based on the docking conformations and alignments. The CoMFA model produced statistically significant results with a cross-validated correlation coefficient (q2) of 0.608 and a coefficient of determination (r2) of 0.972. The reliable CoMSIA model with q2 of 0.662 and r2 of 0.970 was obtained from the combination of steric, electrostatic and hydrogen bond acceptor fields. The predictive power of the models were assessed using an external test set of 14 compounds and showed reasonable external predictabilities (r2pred) of 0.668 and 0.641 for CoMFA and CoMSIA models, respectively. The models were further evaluated by leave-ten-out cross-validation, bootstrapping and progressive scrambling analyses. The study provides valuable information about the key structural elements that are required in the rational design of potential drug candidates of this class of Chk1 inhibitors.  相似文献   

3.
用比较分子场分析法(CoMFA)和比较分子相似性指数分析法(CoMSIA)研究了38个五元杂环并嘧啶衍生物类胸苷酸合成酶抑制剂的三维定量构效关系(3D-QSAR), 建立了相关预测模型. CoMFA和CoMSIA模型的交互验证相关系数q2分别为0.662和0.672、非交互验证相关系数R2分别为0.921和0.884、外部交互验证相关系数Qext2分别为0.85和0.81. 分子对接得到的结合模式与三维定量构效关系得到的结果一致. 结果表明这两种模型都具有良好的预测能力, 可应用于指导化合物的设计和结构修饰, 为进一步设计新型胸苷酸合成酶抑制剂提供了理论依据.  相似文献   

4.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) modelling was conducted on a series of leucine-rich repeat kinase 2 (LRRK2) antagonists using CoMFA and CoMSIA methods. The data set, which consisted of 37 molecules, was divided into training and test subsets by using a hierarchical clustering method. Both CoMFA and CoMSIA models were derived using a training set on the basis of the common substructure-based alignment. The optimum PLS model built by CoMFA and CoMSIA provided satisfactory statistical results (q2 = 0.589 and r2 = 0.927 and q2 = 0.473 and r2 = 0.802, respectively). The external predictive ability of the models was evaluated by using seven compounds. Moreover, an external evaluation set with known experimental data was used to evaluate the external predictive ability of the porposed models. The statistical parameters indicated that CoMFA (after region focusing) has high predictive ability in comparison with standard CoMFA and CoMSIA models. Molecular docking was also performed on the most active compound to investigate the existence of interactions between the most active inhibitor and the LRRK2 receptor. Based on the obtained results and CoMFA contour maps, some features were introduced to provide useful insights for designing novel and potent LRRK2 inhibitors.  相似文献   

5.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were conducted on a series (39 molecules) of peptidyl vinyl sulfone derivatives as potential Plasmodium Falciparum cysteine proteases inhibitors. Two different methods of alignment were employed: (i) a receptor-docked alignment derived from the structure-based docking algorithm GOLD and (ii) a ligand-based alignment using the structure of one of the ligands derived from a crystal structure from the PDB databank. The best predictions were obtained for the receptor-docked alignment with a CoMFA standard model (q 2 = 0.696 and r 2 = 0.980) and with CoMSIA combined electrostatic, and hydrophobic fields (q 2 = 0.711 and r 2 = 0.992). Both models were validated by a test set of nine compounds and gave satisfactory predictive r 2 pred values of 0.76 and 0.74, respectively. CoMFA and CoMSIA contour maps were used to identify critical regions where any change in the steric, electrostatic, and hydrophobic fields may affect the inhibitory activity, and to highlight the key structural features required for biological activity. Moreover, the results obtained from 3D-QSAR analyses were superimposed on the Plasmodium Falciparum cysteine proteases active site and the main interactions were studied. The present work provides extremely useful guidelines for future structural modifications of this class of compounds towards the development of superior antimalarials.  相似文献   

6.

Xanthine oxidase, a complex molybdoflavoprotein, catalyzes the hydroxylation of xanthine to uric acid, which has emerged as an important target for gout and hyperuricemia. In this work, a combination of molecular modeling methods was performed on a series of febuxostat analogues as xanthine oxidase inhibitors to establish molecular models for new drug design, including three-dimensional quantitative structure–activity relationship, topomer comparative molecular field analysis (CoMFA), molecular docking and molecular dynamic simulations. The optimal CoMFA model yielded a leave-one-out correlation coefficient (q2) of 0.841 and a non-validated correlation coefficient (r2) of 0.985. The respective q2 and r2 of the best comparative molecular similarity indices analysis (CoMSIA) model were 0.794 and 0.972, respectively. The Topomer CoMFA model provided a q2 of 0.915 and an r2 of 0.977. 3D contour maps generated from CoMFA and CoMSIA have identified several key features responsible for the inhibition activity. Molecular modeling was taken to further elucidate the proposed binding conformations of the inhibitors to the protein. The obtained results can be served as a useful guideline for designing novel febuxostat derivatives with improved activity against xanthine oxidase.

  相似文献   

7.
Quantitative structure–activity relationship (QSAR) studies were conducted on an in-house database of cytochrome P450 enzyme 1A2 inhibitors using the comparative molecular field analysis (CoMFA), comparative molecular similarity analysis (CoMSIA) and hologram QSAR (HQSAR) approaches. The database consisted of 36 active molecules featuring varied core structures. The model based on the naphthalene substructure alignment incorporating 19 molecules yielded the best model with a CoMFA cross validation value q2 of 0.667 and a Pearson correlation coefficient r2 of 0.976; a CoMSIA q2 value of 0.616 and r2 value of 0.985; and a HQSAR q2 value of 0.652 and r2 value of 0.917. A second model incorporating 34 molecules aligned using the benzene substructure yielded an acceptable CoMFA model with q2 value of 0.5 and r2 value of 0.991. Depending on the core structure of the molecule under consideration, new CYP1A2 inhibitors will be designed based on the results from these models.  相似文献   

8.
Glycogen Synthase Kinase 3 (GSK-3) is a member of cellular kinase with various functions, such as glucose regulation, cellular differentiation, neuronal function and cell apoptosis. It has been proved as an important therapeutic target in type 2 diabetes mellitus and Alzheimer's disease. To better understand their structure–activity relationships and mechanism of action, an integrated computational study, including three dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, and molecular dynamics (MD), was performed on 79 (5-Imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine GSK-3 inhibitors. In this paper, we constructed 3D-QSAR using comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) method. The results showed that the CoMFA model (q 2 = 0.743, r2 = 0.980) and the CoMSIA model (q2 = 0.813, r2 = 0.976) had stable and reliable predictive ability. The electrostatic and H-bond donor fields play important roles in the models. The contour maps of the model visually showed the relationship between the activity of compounds and their three-dimensional structure. Molecular docking was used to identify the key amino acid residues at the active site of GSK-3 and explore its binding mode with ligands. Based on 3D-QSAR models, contour maps and the binding feature between GSK-3 and inhibitor, we designed 10 novel compounds with good potential activity and ADME/T profile. Molecular dynamics simulation results validated that Ile62, Val70 and Lys85 located in the active site play a key role for GSK-3 complexed with inhibitors. These results might provide important information for designing GSK-3 inhibitors with high activity.  相似文献   

9.
PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87).  相似文献   

10.

As per the World Health Organization (WHO), cancer is the second most leading cause of death after cardiovascular diseases in worldwide with around 9.88 million total new cases and 1.08 million were observed due to skin cancer in 2018. Amongst two types of skin cancer, progression of melanoma cancer is increasing day by day due to the environmental changes than non-melanoma cancer. Most of B-Raf mutation, specifically B-RafV600E, is responsible for the progression of the melanoma cancer. Here, various 3D-QSAR techniques like comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), molecular hologram QSAR (HQSAR) and topomer CoMFA were used to design novel B-Raf inhibitors by using 28 synthetic B-Raf inhibitors. Except for topomer CoMFA model, remaining models were generated by three different alignment methods in which distil-based alignment method was found best and gave prominent statistical values. After performing N-fold statistical validation, in CoMFA, q2, r2 and r2pred values were found to be 0.638, 0.969 and 0.848, respectively. Similarly, q2, r2 and r2pred values were found to be 0.796, 0.978 and 0.891 in CoMSIA (SHD) and 0.761, 0.973 and 0.852 in CoMSIA (SH) by N-fold statistical validation. In HQSAR analysis, statistical values were found for q2 as 0.984, r2 as 0.999 and r2pred as 0.634 with 97 as best hologram length (BHL). The results of topomer CoMFA showed the q2 value of 0.663 and the r2 value of 0.967. Important features of purinylpyridine were identified by contour map analysis of all 3D-QSAR techniques, which could be useful to design the novel molecules as B-Raf inhibitors for the treatment of melanoma cancer.

  相似文献   

11.
Summary Molecular docking and 3D-QSAR studies were performed to determine the binding mode for a series of benzoxazine oxytocin antagonists taken from the literature. Structural hypotheses were generated by docking the most active molecule to the rigid receptor by means of AutoDock 3.05. The cluster analysis yielded seven possible binding conformations. These structures were refined by using constrained simulated annealing, and the further ligands were aligned in the refined receptor by molecular docking. A good correlation was found between the estimated ΔGbind and the pKi values for complex F. The Connolly-surface analysis, CoMFA and CoMSIA models qCoMFA2 = 0.653, qCoMSA2 = 0.630 and rpred,CoMFA2 = 0.852 , rpred,CoMSIA2 = 0.815) confirmed the scoring function results. The structural features of the receptor–ligand complex and the CoMFA and CoMSIA fields are in closely connected. These results suggest that receptor–ligand complex F is the most likely binding hypothesis for the studied benzoxazine analogs.  相似文献   

12.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q 2 = 0.655, non-cross validation r 2 = 0.989 and predictive r 2 pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q 2 = 0.719, non-cross validation r 2 = 0.992 and predictive r 2 pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.  相似文献   

13.
靛玉红类CDK1抑制剂的同源模建、分子对接及3D-QSAR研究   总被引:2,自引:0,他引:2  
细胞周期蛋白依赖性激酶1的异常表达会导致G2期的停滞及多种肿瘤的发生,故CDK1近年来已成为一个理想的治疗靶点. 本文以细胞分裂调控蛋白2的同源体为模板,同源模建了CDK1的结构,并与靛玉红类小分子抑制剂进行分子对接. 分别运用三种叠合方法进行分子叠合,并在此基础上采用Sybyl 7.1中的比较分子场分析(CoMFA)模块及Discovery Studio 3.0中的三维定量构效关系(3D-QSAR)模块(以下简称为DS)分别建立了3D-QSAR模型. 其中,将分子对接叠合与公共骨架叠合联合运用的叠合方法所得3D-QSAR模型的评价参数是最佳的(CoMFA:q2=0.681,r2=0.909,rpred.2=0.836; DS:q2=0.579,r2=0.971,rpred.2=0.795,其中q2为交叉验证系数,r2为非交叉验证系数). 本文的研究结果在对靛玉红类小分子进行结构修饰设计出新的CDK1抑制剂方面,可提供重要的理论基础.  相似文献   

14.
In order to investigate the inhibiting mechanism and obtain some helpful information for de-signing functional inhibitors against Wee1, three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies have been performed on 45 pyrido[2,3-d] pyrim-idine derivatives acting as Wee1 inhibitors. Two optimal 3D-QSAR models with significant statistical quality and satisfactory predictive ability were established, including the CoMFA model (q2=0.707, R2=0.964) and CoMSIA model (q2=0.645, R2=0.972). The external val-idation indicated that both CoMFA and CoMSIA models were quite robust and had high predictive power with the predictive correlation coefficient values of 0.707 and 0.794, essen-tial parameter r2m values of 0.792 and 0.826, the leave-one-out r2m(LOO) values of 0.781 and 0.809, r2m(overall) values of 0.787 and 0.810, respectively. Moreover, the appropriate binding orientations and conformations of these compounds interacting with Wee1 were revealed by the docking studies. Based on the CoMFA and CoMSIA contour maps and docking analyses, several key structural requirements of these compounds responsible for inhibitory activity were identified as follows: simultaneously introducing high electropositive groups to the sub-stituents R1 and R5 may increase the activity, the substituent R2 should be smaller bulky and higher electronegative, moderate-size and strong electron-withdrawing groups for the substituent R3 is advantageous to the activity, but the substituent X should be medium-size and hydrophilic. These theoretical results help to understand the action mechanism and design novel potential Wee1 inhibitors.  相似文献   

15.
The binding affinity of a series of benzhydrylpiperazine δ opioid receptor agonists were pooled and evaluated by using 3D-QSAR and homology modeling/molecular docking methods. Ligand-based CoMFA and CoMSIA 3D-QSAR analyses with 46 compounds were performed on benzhydrylpiperazine analogues by taking the most active compound BW373U86 as the template. The models were generated successfully with q2 value of 0.508 and r2 value of 0.964 for CoMFA, and q2 value of 0.530 and r2 value of 0.927 for CoMSIA. The predictive capabilities of the two models were validated on the test set with R2pred value of 0.720 and 0.814, respectively. The CoMSIA model appeared to work better in this case. A homology model of active form of δ opioid receptor was established by Swiss-Model using a reported crystal structure of active μ opioid receptor as a template, and was further optimized using nanosecond scale molecular dynamics simulation. The most active compound BW373U86 was docked to the active site of δ opioid receptor and the lowest energy binding pose was then used to identify binding residues such as s Gln105, Lys108, Leu125, Asp128, Tyr129, Leu200, Met132, Met199, Lys214, Trp274, Ile277, Ile304 and Tyr308. The docking and 3D-QSAR results showed that hydrogen bond and hydrophobic interactions played major roles in ligand-receptor interactions. Our results highlight that an approach combining structure-based homology modeling/molecular docking and ligand-based 3D-QSAR methods could be useful in designing of new opioid receptor agonists.  相似文献   

16.
Molecular modelling studies [comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), topomer CoMFA and hologram quantitative structure–activity relationship (HQSAR)] have been performed on the series of 28 molecules belonging to the series of aromatic acid ester derivatives for their carbonic anhydrase inhibitory activity. The model exhibited good correlation coefficient (r2) and cross‐validated correlation coefficient (q2) for CoMFA, CoMSIA and HQSAR methods. On the basis of the findings from all these studies, a structure–activity relationship was established. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

This study has investigated docking-based 3D quantitative structure–activity relationships (QSARs) for a range of quinoline carboxylic acid derivatives by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). A docking study has shown that most of the compounds formed H-bonds with Arg136 and Gln47, which have already been shown to be essential for the binding of ligands at the active site of the hydroorotate dehydrogenase adenovirus (hDHODH). Bioactive conformations of all the molecules obtained from the docking study were used for the 3D QSAR study. The best CoMFA and CoMSIA models were obtained for the training set and were found to be statistically significant, with cross-validated coefficients (q2 ) of 0.672 and 0.613, r2 cv of 0.635 and 0.598 and coefficients of determination (r2 ) of 0.963 and 0.896, respectively. Both models were validated by a test set of 15 compounds, giving satisfactory predicted correlation coefficients (r2 pred) of 0.824 and 0.793 for the CoMFA and CoMSIA models, respectively. From the docking-based 3D QSAR study we designed 34 novel quinoline-based compounds and performed structure-based virtual screening. Finally, in silico pharmacokinetics and toxicities were predicted for 24 of the best docked molecules. The study provides valuable information for the understanding of interactions between hDHODH and the novel compounds.  相似文献   

18.
In this study, based on molecular docking analysis and comparative molecular field analysis (CoMFA) modelling of a series of 71 CD38 inhibitors including 4?amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides, new CD38 inhibitors were designed. The interactions of the molecules with the greatest and the lowest activities with the nicotinamide mononucleotide (NMN) binding site were investigated by molecular docking analysis. A CoMFA model with four partial least squares regression (PLSR) components was developed to predict the CD38 inhibitory activity of the molecules. The r2 values for the training and test sets were 0.89 and 0.82, respectively. The Q2 values for leave-one-out cross-validation (LOO-CV) and leave-many-out cross-validation (LMO-CV) tests on the training set were 0.65 and 0.64, respectively. The CoMFA model was validated by calculating several statistical parameters. CoMFA contour maps were interpreted, and structural features that influence the CD38 inhibitory activity of molecules were determined. Finally, seven new CD38 inhibitors with greater activity with respect to the greatest active molecules were designed.  相似文献   

19.
20.
Three-dimension quantitative structure activity relationship (3D-QSAR) was one of the major statistical techniques to investigate the correlation of biological activity with structural properties of candidate molecules, and the accuracy of statistic greatly depended on molecular alignment methodology. Exhaustive conformational search and successful conformational superposition could extremely improve the predictive accuracy of QSAR modeling. In this work, we proposed a solution to optimize QSAR prediction by multiple-conformational alignment methods, with a set of 40 flexible PTP1B inhibitors as case study. Three different molecular alignment methods were used for the development of 3D-QSAR models listed as following: (1) docking-based alignment (DBA); (2) pharmacophore-based alignment (PBA) and (3) co-crystallized conformer-based alignment (CCBA). Among these three alignments, it was indicated that the CCBA was the best and the fastest strategy in 3D-QSAR development, with the square correlation coefficient (r2) and cross-validated squared correlation coefficient (q2) of comparative molecular field analysis (CoMFA) were 0.992 and 0.694; the r2 and q2 of comparative molecular similarity indices analysis (CoMSIA) were 0.972 and 0.603, respectively. The alignment methodologies used here not only generated a robust QSAR model with useful molecular field contour maps for designing novel PTP1B inhibitors, but also provided a solution for constructing accurate 3D-QSAR model for various disease targets. Undoubtedly, such attempt in QSAR analysis would greatly help us to understand essential structural features of inhibitors required by its target, and so as to discover more promising chemical derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号