首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The unique advantages of quantum dot (QD) bioconjugates have motivated their application in biological assays. However, physical characterization of bioconjugated QDs after surface modification has often been overlooked. Here, biotinylated antibodies (biotin-IgG) were attached to commercial streptavidin-conjugated quantum dots (strep-QDs) at different stoichiometric ratios, and these QD bioconjugates were characterized with atomic force microscopy and discontinuous sodium dodecyl sulfate agarose gel electrophoresis (SDS-AGE). The results from these complementary analytical techniques showed that the molar ratio determined the relative sizes, molecular weights and morphologies of the QD bioconjugates. Additionally, the novel discontinuous SDS-AGE analysis confirmed specific binding between biotin-IgG and strep-QDs. Researchers who design QD bioconjugates for cell-based assays should consider stoichiometry-dependent differences in the physical properties of their QD bioconjugates.  相似文献   

2.
Avidin: a natural bridge for quantum dot-antibody conjugates   总被引:20,自引:0,他引:20  
We describe the preparation and characterization of bioinorganic conjugates in which luminescent semiconductor CdSe-ZnS core-shell nanocrystal quantum dots (QDs) were coupled to antibodies through the use of an avidin bridge adsorbed to the nanocrystal surface via electrostatic self-assembly. Avidin, a highly positively charged protein, was found to adsorb tightly to QDs modified with dihydrolipoic acid, which gives their surface a homogeneous negative charge. QD conjugation to biotinylated antibodies subsequently is readily achieved. Fluoroimmunoassays utilizing these antibody conjugated QDs were successful in the detection of protein toxins (staphylococcal enterotoxin B, cholera toxin). QD-antibody conjugates formed in such a facile manner permit their use as a common immuno reagent, and in the development of multianalyte detection.  相似文献   

3.
Self-assembly of fluorenylmethoxycarbonyl-protected diphenylalanine (FmocFF) in water is widely known to produce hydrogels. Typically, confocal microscopy is used to visualize such hydrogels under wet conditions, that is, without freezing or drying. However, key aspects of hydrogels like fiber diameter, network morphology and mesh size are sub-diffraction limited features and cannot be visualized effectively using this approach. In this work, we show that it is possible to image FmocFF hydrogels by Points Accumulation for Imaging in Nanoscale Topography (PAINT) in native conditions and without direct gel labelling. We demonstrate that the fiber network can be visualized with improved resolution (≈50 nm) both in 2D and 3D. Quantitative information is extracted such as mesh size and fiber diameter. This method can complement the existing characterization tools for hydrogels and provide useful information supporting the design of new materials.  相似文献   

4.
We describe herein studies on as-prepared hydrophobic ZnS-CdSe quantum dots (QDs) at the air-water interface. Surface pressure-area (pi-A) isotherms have been used to study the monolayer behavior. Uniform, lamellar multilayer thin films of QDs were deposited by the Langmuir-Blodgett (LB) technique. The role of two different surfactant systems commonly employed in the synthesis of these QDs (trioctylphosphine oxide-octadecylamine (TOPO-ODA) system and trioctylphosphine oxide-tetradecylphosphonic acid (TOPO-TDPA) system) on the monolayer behavior and the quality of thin films produced has been investigated. The thin films were characterized by quartz crystal microgravimetry (QCM), contact angle measurements, fluorescence spectroscopy, and transmission electron microscopy (TEM). These QD films were further modified by an amphiphilic polymer, poly(maleic anhydride-alt-1-tetradecene) (PMA). The hydrophobic interaction between the polymers and the surfactants attached to the QDs drove the self-assembly process. The carboxylic acid functional groups in the polymer were also used to immobilize avidin. We have demonstrated a proof of concept for the biosensing strategy wherein the avidin-coated QD films attracted biotinylated gold nanoparticles, resulting in fluorescence resonance energy transfer (FRET) quenching of the thin films.  相似文献   

5.
将胶体晶体阵列(crystalline colloidal arrays,CCA)的Bragg衍射特性与水凝胶的刺激响应性功能结合起来,可制成一种有效的对特定分子具有识别和响应能力的传感材料.采用无皂乳液聚合制备的单分散聚(苯乙烯-4-苯乙烯磺酸钠)纳米颗粒,通过表面电荷的静电斥力可自组装形成CCA,经光聚合固定在水凝胶网络内形成聚合胶体晶阵(polymerized CCA).在水凝胶网络中用共价结合引入生物素分子,通过强的亲和相互作用可与蛋白质亲和素生成生物素-亲和素复合物,在水凝胶网络中形成交联点,引起水凝胶体积相变,进而导致CCA晶面间距发生改变,从而引发Bragg衍射波长发生相应的移动.  相似文献   

6.
Several high-resolution imaging techniques such as FESEM, TEM and AFM are compared with respect to their application on alginate hydrogels, a widely used polysaccharide biomaterial. A new AFM method applicable to RGD peptides covalently conjugated to alginate hydrogels is described. High-resolution images of RGD adhesion ligand distribution were obtained by labeling biotinylated RGD peptides with streptavidin-labeled gold nanoparticles. This method may broadly provide a useful tool for sECM characterization and design for tissue regeneration strategies.  相似文献   

7.
The study focuses on developing hyaluronic acid (1200 kilo Dalton) hydrogels for cartilage regeneration. In spite of being highly biocompatible; a large amount of water absorption and easily degrading nature restricts the use of hyaluronic acid in the field of tissue regeneration. This can be rectified by crosslinking hyaluronic acid with a crosslinking agent such as divinyl sulfone; which results in a biocompatible hydrogel with superior rheological properties. Different amounts of divinyl sulfone have been used for crosslinking hyaluronic acid to get three types of hydrogels with differing properties. Swelling studies, rheology analysis, enzymatic degradation and scanning electron microscopic analysis were conducted on all the different types of hydrogels prepared. Viscoelastic properties of the hydrogel were analyzed so that a hydrogel with better elastic property and stability is obtained. Scanning electron microscopy was used to study the morphology of the HA hydrogels. The cytotoxicity testing was conducted to prove the non-toxic nature of the hydrogels and cell culture studies using adipose mesenchymal stem cells showed better adhesion and proliferation properties in all the three hydrogels. Thus hyaluronic acid hydrogel makes a promising material for cartilage regeneration.  相似文献   

8.
Acting as a cage-type cellular probe, an extracellular supramolecular reticular DNA-quantum dot (QD) sheath has been developed for high-intensity fluorescence microscopy imaging and the sensitive electrochemical detection of Ramos cells. The extracellular supramolecular reticular DNA-QD sheath is constructed from layer-by-layer self-assembly of DNA-CdTe QD probes and DNA nanowire frameworks functionalized with a Ramos cell-binding aptamer. The DNA-QD sheath forms specifically and quickly on the surface of Ramos cells at physiological temperature, and the assembly of large numbers of DNA-CdTe QD probes on the surface of Ramos cells produces exceedingly high fluorescence intensity. Using the extracellular supramolecular reticular DNA-QD sheath as the cellular probe, Ramos cells can be clearly observed and easily distinguished from a mixture of multiple cancer cells by fluorescence microscopy imaging. Using the new cage-type cellular probe, a sensitive sandwich-type electrochemical strategy has also been developed to achieve accurate quantitative analysis of Ramos cells. Under the optimized conditions, Ramos cells can be detected quantitatively in a range from 10 to 1000 cells with a detection limit of 10 cells. This strategy presents a promising platform for highly sensitive and convenient evaluation of cancer cell levels.  相似文献   

9.
A sensitive optical method based on quantum dot (QD) technology is demonstrated for the detection of an important cancer marker, total prostate-specific antigen (TPSA) on a disposable carbon substrate surface. Immuno-recognition was carried out on a carbon substrate using a sandwich assay approach, where the primary antibody (Ab)-protein A complex covalently bound to the substrate surface, was allowed to capture TPSA. After the recognition event, the substrate was exposed to the biotinylated secondary Abs. After incubation with the QD streptavidin conjugates, QDs were captured on the substrate surface by the strong biotin-streptavidin affinity. Fluorescence imaging of the substrate surface illuminated the QDs, and provided a very sensitive tool for the detection of TPSA in undiluted human serum samples with a detection limit of 0.25 ng/mL. The potential of this method for application as a simple and efficient diagnostic strategy for immunoassays is discussed.  相似文献   

10.
A galactoside-based polyacrylate hydrogel was used as a scaffold to immobilize antibodies for the development of a sandwich immunoassay to detect cholera toxin (CT) and staphylococcal enterotoxin B (SEB). The hydrogel possesses large pores and simulates a solution-like environment allowing easy penetration of large biomolecules. Highly crosslinked hydrogels containing pendant amine or carboxyl functionalities were polymerized through a free-radical polymerization process. Covalent crosslinking of the antibodies on hydrogel films was accomplished using a homobifunctional crosslinker or carbodiimide chemistry. Utilizing the two different crosslinking methodologies, our results demonstrated the effectiveness of repetitive additions of crosslinker reactant into a single location on the gel surface. This approach in fact increased the amount of immobilized antibody. Patterned arrays of the immobilized antibodies for sandwich immunoassay development were achieved using a PDMS template containing micro-channels. This template provided a suitable means for applying reagents in multiple cycles. Fluorescence and three-dimensional (3D) imaging by confocal microscopy and laser scanning confocal microscopy of Cy3-labeled anti-CT and/or Cy3-anti-SEB tracer molecules provided qualitative and quantitative measurements on the efficiency of protein immobilization, detection sensitivity and signal-to-noise ratios. As a result of using the galactose polyacrylate-base hydrogel as a platform for immunoassay development, we have successfully been able to achieve low limits of detection for SEB and cholera toxins (1.0 ng mL(-1)). Repetitive additions (>3 cycles) of the crosslinker and antibody have also shown a dramatic increase in the immobilization of antibody resulting in improved immunoassay sensitivity. Fluorescence signal-to-noise ratios using the hydrogel-based immunoassays have been observed as high a 40:1.  相似文献   

11.
In this article, we report on the viscoelastic and thermal properties of agarose–polyacrylamide (PAAm) interpenetrating polymer hydrogels (IPHs) and semi‐IPHs as a function of agarose concentration and PAAm crosslinking degree. The results demonstrated that the agarose is able to gel in the presence of crosslinked and linear IPHs. In addition, the reticulation of PAAm in the presence of agarose is confirmed for the case of IPHs giving rise to systems with dimensional stability at high temperatures. The formation of a fully IPH was ascertained at low agarose concentrations. A study of the morphology and nanoscale elasticity of the different systems has been carried out with atomic force microscopy/ultrasonic force microscopy (UFM). UFM data provide further evidence of interpenetration, allowing us to visualize—if present—phase‐separated domains with nanoscale resolution for the various crosslinking degrees and PAAm and agarose concentrations used during the formation of the IPHs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

12.
A time-resolved fluoro-immunoassay (TR-FIA) format is presented based on resonance energy transfer from visible emitting lanthanide complexes of europium and terbium, as energy donors, to semiconductor CdSe/ZnS core/shell nanocrystals (quantum dots, QD), as energy acceptors. The spatial proximity of the donor-acceptor pairs is obtained through the biological recognition process of biotin, coated at the surface of the dots (Biot-QD), and streptavidin labeled with the lanthanide markers (Ln-strep). The energy transfer phenomenon is evident from simultaneous lanthanide emission quenching and QD emission sensitization with a 1000-fold increase of the QD luminescence decay time reaching the hundred mus regime. Delayed emission detection allows for quantification of the recognition process and demonstrated a nearly quantitative association of the biotins to streptavidin with sensitivity limits reaching 1.2 pM of QD. Spectral characterization permits calculation of the energy transfer parameters. Extremely large F?rster radii (R(0)) values were obtained for Tb (104 A) and Eu (96 A) as a result of the relevant spectral overlap of donor emission and acceptor absorption. Special attention was paid to interactions with the varying constituents of the buffer for sensitivity and transfer efficiency optimization. The energy transfer phenomenon was also monitored by time-resolved luminescence microscopy experiments. At elevated concentration (>10(-)(5) M), Tb-strep precipitated in the form of pellets with long-lived green luminescence, whereas addition of Biot-QD led to red emitting pellets, with long excited-state decay times. The Ln-QD donor-acceptor hybrids appear as highly sensitive analytical tools both for TR-FIA and time-resolved luminescence microscopy experiments.  相似文献   

13.
The thermal behavior of hydrogels synthesized by solution polymerization between acrylamide, acrylic acid and diglycidyl acrylate (DGA) as a crosslinking agent was investigated. The structure of the hydrogel can be tightly controlled with the reaction temperature. This method produces a new type of hydrogels, which exhibit well defined structures at various scales of length simultaneously. These multi-structured hydrogels are hydrophilic, elastic, water insoluble, and soft polymers with an anisotropic optical response. The structure was observed by scanning electron microscopy (SEM), polarized light microscopy (PLM) and macroscopic visualization (CCD camera). In addition, structural transitions in the hydrogels were monitored by temperature modulated differential scanning calorimetry (TMDSC). Severe heating tests in an adiabatic oven were performed to analyze decomposition of the material. Fourier transform infrared (FTIR) spectroscopy was used to qualitatively analyze the hydrogels samples exposed to a sudden thermal treatment.  相似文献   

14.
The assembly kinetics of colloidal semiconductor quantum dots (QDs) on solid inorganic surfaces is of fundamental importance for implementation of their solid-state devices. Herein an inorganic binding peptide, silica binding QBP1, was utilized for the self-assembly of nanocrystal quantum dots on silica surface as a smart molecular linker. The QD binding kinetics was studied comparatively in three different cases: first, QD adsorption with no functionalization of substrate or QD surface; second, QD adsorption on QBP1-modified surface; and, finally, adsorption of QBP1-functionalized QD on silica surface. The surface modification of QDs with QBP1 enabled 79.3-fold enhancement in QD binding affinity, while modification of a silica surface with QBP1 led to only 3.3-fold enhancement. The fluorescence microscopy images also supported a coherent assembly with correspondingly increased binding affinity. Decoration of QDs with inorganic peptides was shown to increase the amount of surface-bound QDs dramatically compared to the conventional methods. These results offer new opportunities for the assembly of QDs on solid surfaces for future device applications.  相似文献   

15.
Nanofiber formation of dipeptide-based bolaamphiphiles, bis (N-alpha-amide--valyl--valine) 1,n-alkane dicarboxylate (n=6, 8, 10, and 12) in water was analyzed by TEM, SEM, IR, and XRD. The bolaamphiphiles proved to be coordinated to divalent transition-metal cations, such as Co2+, Ni2+, Cu2+, and Zn2+, giving precipitates, colloidal dispersions (loose hydrogels), and hydrogels upon self-assembly at 23 or 70 degrees C. Longer oligomethylene chains and strong interaction between the metal cations and the carboxylate anions are responsible for the hydrogel formation. Energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (EF-SEM) images revealed that the colloidal dispersions and the hydrogels consist of a large number of nanofibers with widths of 15-20 nm and lengths of several micrometers. FT-IR and powder XRD measurement supported the existence of a beta-sheet structure-based nanofibers complexing with metal cations.  相似文献   

16.
Since it is presumed that by incorporation of pH-responsive (IA) and temperature-responsive (OEGA) co-monomers, it is possible to prepare P(HEMA/IA/OEGA) hydrogels with dual (pH and thermo) responsiveness, the main purpose of our study is to investigate the influence of different mole fractions of IA and especially OEGA on the diversity of the swelling properties of the obtained hydrogels. For that reason, a series of terpolymeric hydrogels with different mole ratios of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and oligo(ethylene glycol) acrylates (OEGA) was synthesised by gamma radiation. The obtained hydrogels were characterised by swelling studies in the wide pH (2.2–9.0) and temperature range (20–70 °C), confirming dual (pH and thermo) responsiveness and a large variation in the swelling capability. It was observed that the equilibrium swelling of P(HEMA/IA/OEGA) hydrogels, for a constant amount of IA, increased progressively with an increase in OEGA share. On the other hand, the dissociation of carboxyl groups from IA occurs at pH>4; therefore, small mole fractions of IA render good pH sensitivity and a large increase in the swelling capacity of these hydrogels at higher pH values. Additional characterisation of structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical measurements, confirming that the inherent properties of P(HEMA/IA/OEGA) hydrogels can be significantly tuned by variation in their composition. According to all presented, it seems that the obtained hydrogels can be a beneficial synergetic combination for controlled delivery of bioactive molecules such as drugs, peptides, proteins, etc.  相似文献   

17.
Luminescent semiconductor quantum dot (QD)-based optical biosensors have the potential to overcome many of the limitations associated with using conventional organic dyes for biodetection. We have previously demonstrated a hybrid QD-protein-based fluorescence resonance energy transfer (FRET) sensor. Although the QD acted as an energy donor and a protein scaffold in the sensor, recognition and specificity were derived from the proteins. Transitioning this hybrid prototype sensor into flow cells and integrated devices will require a surface-immobilization strategy that allows the QD-based sensor to sample the environment and still maintain a distinct protein-covered QD architecture. We demonstrate a self-assembled strategy designed to accomplish this. Using glass slides coated with a monolayer of neutravidin (NA) as the template, QDs with maltose binding protein (MBP) and avidin coordinated to their surface were attached to the glass slides in discrete patterns using an intermediary bridge of biotinylated MBP or antibody linkers. Control of the surface location and concentration of the QD-protein-based structures is demonstrated. The utility of this self-assembly strategy is further demonstrated by assembling a QD-protein structure that allows the QDs to engage in FRET with a dye located on the surface-covering protein.  相似文献   

18.
Zilin Fan 《Talanta》2007,72(3):1114-1122
We developed a simple fluorescence microscopy for acquisition of high-resolution images of single quantum dots (QDs) labeled to biomolecules on apical plasma membrane, in cell interior and on basal plasma membrane of living cells. The method was a combination of total internal reflection fluorescence microscopy (TIRFM) at apical cell surface and intracellular microscopy coupled with focusing objective. Insulin conjugated to single QD (insulin-QD) was chosen as the model system. In order to bind insulin-QDs to insulin receptors on the plasma membrane through the interaction between insulin and its receptor, as well as internalize them, the cells attached on a coverslip were incubated with biotinylated insulin and QD-streptavidin conjugate at 37 °C. Next, fluorescent molecules in the cells were photobleached by illuminating the cells using a 100-W mercury lamp with the wavelengths from 460 to 490 nm. Then, the incident angle of a laser beam was adjusted to produce total internal reflection at the apical surface of a single cell. In this case, the insulin-QDs in the whole cell were excited, and the fluorescent molecules outside the cell were not illuminated. Finally, the images of single insulin-QDs on the apical plasma membrane, in the cell interior and on the basal plasma membrane of the cell were taken by focusing the objective to different positions, respectively. The resolution and contrast of the fluorescent spots in the images were much higher than those obtained by using epi-fluorescence microscopy and comparable to those obtained by using the conventional TIRFM. The method improved the image acquisition speed for the images on the apical and basal plasma membrane using the conventional TIRFM, and could acquire the high-resolution images in the cell interior quickly.  相似文献   

19.
The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format.  相似文献   

20.
Zhang CY  Johnson LW 《The Analyst》2006,131(4):484-488
We report a homogenous method for rapid and sensitive detection of nucleic acids using two-color quantum dots (QDs) based on single-molecule coincidence detection. The streptavidin-coated quantum dots functioned as both a nano-scaffold and as a fluorescence pair for coincidence detection. Two biotinylated oligonucleotide probes were used to recognize and detect specific complementary target DNA through a sandwich hybridization reaction. The DNA hybrids were first caught and assembled on the surface of 605 nm-emitting QDs (605QDs) through specific streptavidin-biotin binding. The 525 nm-emitting QDs (525QDs) were then added to bind the other end of DNA hybrids. The coincidence signals were observed only when the presence of target DNA led to the formation of 605QD/DNA hybrid/525QD complexes. In comparison with a conventional QD-based assay, this assay provided high detection efficiency and short analysis time due to its high hybridization efficiency resulting from the high diffusion coefficient and no limitation of temperature treatment. This QD-based single-molecule coincidence detection offers a simple, rapid and ultra sensitive method for genomic DNA analysis in a homogenous format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号