共查询到20条相似文献,搜索用时 0 毫秒
1.
Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution 总被引:6,自引:0,他引:6
The phase behavior and aggregation properties of block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronics, poloxamers) in aqueous solution have recently attracted much attention. Both experimental and theoretical studies are reviewed, not comprehensively, but with the focus on studies, partly cooperative, partly independent, performed by groups in Uppsala (light scattering and fluorescence), Roskilde (rheology and calorimetry), Risø (SANS), Graz (x-ray and speed of sound), and Lund (theoretical model calculations).The phase behavior of these copolymers is similar in many respects to that of conventional nonionic surfactants, with the appearance of hexagonal, cubic, and lamellar liquid crystalline phases at high concentrations. In the isotropic solution phase the critical concentration for micelle formation is strongly temperature dependent, and at a given concentration the monomer to micelle transition occurs gradually over a broad temperature range, partly due to the broad size polydispersity of both the PO- and EO-blocks. For some Pluronic copolymers a transition from globular to long rod-like micelles occurs above a transition temperature, resulting in a strong and sudden increase of viscosity and viscoelasticity of the solution.Size and aggregation numbers have been determined for the globular micelles in some cases, and also the rod-like micelles have been characterized. NMR and fluorescence measurements have provided further information on the properties of the micellar core and mantle. In combination, results from different measurements on the same Pluronics material indicate that the aggregation number of the micelles increases with the temperature, whereas the hydrodynmic radius varies much less. The PEO-mantle of the micelles seems to contract with increasing temperature. The core appears to contain appreciable amounts of PEO in addition to PPO (and also some water). The segregation between core and mantle is not as distinct as in normal micelles, a conclusion which is in line with the predictions from the model calculations. 相似文献
2.
The self-diffusion of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers dissolved in deuterated water was investigated by means of pulsed field gradient NMR (PFG-NMR). The polymer forms micelles in the solution and, with increasing temperature, clouding and phase demixing occurs. The self-diffusion coefficient indicates the association of the polymer molecules in the vicinity of the cloud point because of its maximum with increasing temperature. Above the cloud point, two kinds of diffusing species are observed due to phase separation. The faster diffusing species is attributed to the polymer-poor phase. The self-diffusion coefficient of the polymer-rich phase species decreases with increasing temperature above the cloud point due to further association and dehydration. The correlation length of the diffusing associates, calculated from the self-diffusion coefficient and the viscosity by means of the Stokes-Einstein equation is nearly independent of temperature and concentration up to 30 wt-% polymer concentration. The correlation length is about 1.4 nm. It shows a slight maximum at the cloud point. 相似文献
3.
应用荧光光谱技术,对尿素与牛血清蛋白在30℃水溶液中的结合作用及造成牛血清蛋白变性的过程进行了研究,获取了尿素诱导牛血清蛋白变性时相对荧光强度和峰位的变化规律.用Pace等提出的公式分析了相对荧光强度数据,得到了牛血清蛋白变性时的伸展分数fu随溶液pH值和尿素浓度的变化规律.求出了变性平衡常数Ku,伸展吉布斯自由能△G... 相似文献
4.
Lívia M. D. Loiola Marcelo A. de Farias Rodrigo V. Portugal Maria I. Felisberti 《Journal of polymer science. Part A, Polymer chemistry》2018,56(19):2203-2213
Polylactide (PLA) is a biodegradable polyester recognized for its potential use as a biomedical material. Poly(ethylene oxide) (PEO) and copolymers based on PEO and poly(propylene oxide) (PPO) are biocompatible polyethers widely applied in the biomedical field, particularly as macromolecular nonionic surfactants. In this work, PLA blocks were attached to the PEO and to the PEO and PPO-based triblock copolymer PEO–PPO–PEO, through ring-opening polymerization of racemic lactide (rac-LA) to obtain the amphiphilic triblock PLA–PEO–PLA and pentablock PLA–PEO–PPO–PEO–PLA copolymers containing hydrophilic/hydrophobic blocks with variable block mass ratios. The copolymers were evaluated for chemical composition, molar mass, and thermal properties, and they were used to prepare self-assemble aggregates in water from tetrahydrofuran polymer solutions. The combination of scattering light experiments and microscopy techniques revealed the spherical morphology of the aggregates with diameters around 180–200 nm, which comprises a hydrophobic PLA core and a hydrophilic polyether shell. The aggregates are nontoxic to human cervical cancer cell line — HeLa cells, as determined by MTS assay, and the aggregates are potential candidates to be applied in the encapsulation of hydrophobic compounds. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2203–2213 相似文献
5.
Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy 总被引:2,自引:0,他引:2
The interaction between biliverdin and bovine serum albumin (BSA) has been studied by steady fluorescence spectroscopy, synchronous fluorescence and resonance light scanning spectra. The binding of biliverdin to BSA quenches the tryptophan residue fluorescence and the results show that both static and dynamic quenching occur together with complex formation. The binding constant and binding sites of biliverdin to BSA at pH 7.1 are calculated to be 3.33 × 108 L/mol and 1.54, respectively, according to the double logarithm regression curve. In addition, the distance between the biliverdin and BSA is estimated to be 1.25 nm using Föster's equation on the basis of the fluorescence energy transfer. Furthermore the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues has not obvious changes, which obeys the phase distribution model. Finally, the thermodynamic data show that biliverdin molecules enter the hydrophobic cavity of BSA via hydrophobic interaction. 相似文献
6.
采用荧光光谱、紫外光谱、CD光谱法研究了K2Cr2O7与牛血清白蛋白(BSA)的相互作用。实验结果表明, 铬(Ⅵ)使BSA的紫外吸收降低,峰位红移,表明铬(Ⅵ)与BSA发生较强的相互作用;铬(Ⅵ)酸根离子与BSA形成基态复合物导致BSA内源荧光猝灭,猝灭机理主要为静态猝灭。测定了不同温度下该反应的热力学参数,ΔGθ<0,ΔHθ和ΔSθ分别为–12.60 kJ/mol 和 56.60 J/(mol·k), 表明上述作用过程是一个熵增加、自由能降低的自发分子间作用过程,铬(Ⅵ)酸根离子与BSA之间以静电作用力为主;非辐射能量转移机理确定了铬(Ⅵ)与牛血清白蛋白中色氨酸残基之间的距离 r=2.85 nm;同步荧光和CD光谱研究表明,铬(Ⅵ)使BSA的二级结构发生改变,α–螺旋含量降低,色氨酸残基所处微环境的极性减小。 相似文献
7.
The micellization properties of carboxy-modified Pluronics P85 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers) are investigated by means of a molecularly realistic self-consistent-field theory. We consider the, so-called, carboxylic acid end-standing P85 (CAE-85) case where the carboxylic group is located at the end of both PEO parts and the carboxylic acid center-standing P85 (CAC-85) case where each of the carboxylic group presents between the PEO and PPO blocks. The micellization of these copolymers depends on the pH, the added electrolyte concentration phis, and the temperature. It is shown that the aggregation number (Nagg) decreases, whereas the critical micellization concentration (CMC) increases with pH. For the case of increasing phis, the Nagg increases and the CMC decreases. The critical micellization temperature (CMT) and cloud point temperature (CPT) increase with pH at low phis and decrease at increasing phis. The changing from CAE-85 to CAC-85 leads to increasing CMC and CMT, but lower CPT. 相似文献
8.
Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers 总被引:1,自引:0,他引:1
Yang B Guo C Chen S Ma J Wang J Liang X Zheng L Liu H 《The journal of physical chemistry. B》2006,110(46):23068-23074
The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed. 相似文献
9.
The effect of sodium chloride (NaCl) upon the thermally induced association behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, Pluronic P103, has been investigated using pyrene fluorescence spectroscopy. The critical micellization temperature (CMT) of Pluronic P103 in aqueous solution is decreased by the addition of NaCl. The standard enthalpy and entropy of micellization for Pluronic P103 in water are increased in the presence of small amounts of NaCl, but further addition of NaCl decreases the standard enthalpy and entropy of micellization. The I1/I3 ratio of pyrene in aqueous Pluronic P103 solutions at temperature below the CMT decreases with increases of NaCl concentration, which is related to the decrease of PPO solubility. The decrease in polarity of the PPO shifts the CMT toward lower temperature. 相似文献
10.
11.
The dissipative particle dynamics (DPD) simulation method was applied to simulate the aggregation behavior of three block copolymers, (EO)16(PO)18, (EO)8(PO)18(EO)8, and (PO)9(EO)16(PO)9, in aqueous solutions. The results showed that the size of the micelle increased with increasing concentration. The diblock copolymer (EO)16(PO)18 would form an intercluster micelle at a certain concentration range, besides the traditional aggregates (spherical micelle, cylindrical micelle, and lamellar phase); while the triblock copolymer (EO)8(PO)18(EO)8 would form a spherical micelle, cylindrical micelle, and lamellar phase with increasing concentration, and (PO)9(EO)16(PO)9 would form intercluster aggregates, as well as a spherical micelle and gel. New mechanisms were given to explain the two kinds of intercluster micelle formed by the different copolymers. It is deduced from the end-to-end distance that the morphologies of the diblock copolymer and triblock copolymer with hydrophilic ends were more extendible than the triblock copolymer with hydrophobic ends. 相似文献
12.
13.
14.
15.
16.
Grant CD Steege KE Bunagan MR Castner EW 《The journal of physical chemistry. B》2005,109(47):22273-22284
Aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO109-PPO41-PEO109) copolymers are nonionic surfactants that self-organize to form aggregate structures with increasing temperature or concentration. We have studied two concentrations over a range of temperatures so that the copolymers are in one of three microphases: unimers, micelles, or hydrogels formed from body centered cubic aggregates of micelles. Three different coumarin dyes were chosen based on their hydrophobicity so that different aggregate regions could be probed independently-water insoluble coumarin 153 (C153), hydrophobic coumarin 102 (C102), and the hydrophilic sodium carboxylate form of coumarin 343 (C343-). Fluorescence anisotropy experiments provide detailed information on the local microviscosity. C153 experiences a fourfold increase in reorientation time and hence microviscosity with increasing temperature through the microphase transition from unimers to micelles. C102 also shows an increase in microviscosity with temperature but smaller in magnitude and with the microphase transition shifted to higher temperature relative to C153. C343- shows only a slight sensitivity to the microphase transition. For any of the three coumarin probes, fluorescence anisotropies do not show any correlation with the microphase transition to form cubic hydrogels. 相似文献
17.
Modified Stern-Volmer equation is obeyed by bovine serum albumin (BSA)-iodide system showing selective quenching of tryptophanyl
fluorescence of BSA. The fraction of accessible protein fluorescence is 0.56 and the effective Stern-Volmer constant is 290
M-1 at pH 7.4 in 0.005 M phosphate buffer at 25°C. Collisional quenching is operative both in the BSA -I−1 system and the model system, tryptophan-I−1. It is supported by the observed relationship between the ratio of quenching rate constants (k
q
) and diffusion coefficients and alsok
q
with bulk viscosity. 相似文献
18.
在pH=7.4的生理条件下,应用荧光光谱法研究了速灭威与牛血清白蛋白间相互作用。结果表明:速灭威对牛血清白蛋白的荧光有较强的猝灭作用,测定不同温度下的猝灭常数,证实了速灭威对牛血清白蛋白的荧光猝灭过程机理为静态猝灭。根据猝灭结果计算了不同温度下的结合位点数、结合常数。应用同步荧光光谱法探讨了速灭威对牛血清白蛋白构象的影响。依据f ster非辐射能量转移理论确定受体间的结合距离和能量转移效率。 相似文献
19.
Liang X Guo C Ma J Wang J Chen S Liu H 《The journal of physical chemistry. B》2007,111(46):13217-13220
Aggregation and disaggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, Pluronics P103 and P104, in aqueous solutions during a heating and cooling cycle were investigated by dynamic laser scattering (DLS) and 1H NMR spectroscopy. Temperature hysteresis was observed by DLS when cooling the copolymer aqueous solutions because larger aggregates existed at temperatures lower than critical micellization temperature (CMT), but no temperature differences were observed by NMR. This phenomenon was explained as the forming of water-swollen micelles at temperatures lower than CMT during the cooling process. 相似文献
20.
Byeongmoon Jeong Doo Sung Lee Jeong‐In Shon You Han Bae Sung Wan Kim 《Journal of polymer science. Part A, Polymer chemistry》1999,37(6):751-760
The gel to sol transition of aqueous solutions of di‐ and triblock copolymers consisting of poly(ethylene oxide) and biodegradable polyesters was studied as a function of temperature. The molecular weight and the chemical composition of the biodegradable blocks, (poly(l ‐lactic acid), poly(dl ‐lactic acid), poly(dl ‐lactic acid‐co‐caprolactone), and poly(dl ‐lactic acid‐co‐glycolic acid)) were varied to investigate the effects of chain packing and relative hydrophobicity on the gel to sol transition. The block copolymers studied formed micelles at lower concentrations in water, while the concentrated solutions experienced a gel to sol transition as the temperature increased. Further increase in temperature resulted in the precipitation of polymers. With increasing molecular weight and chain packing tendency of hydrophobic biodegradable block, the gel to sol transition occurred at lower concentrations and the transition temperature ranged from 0°C to over 90°C in a relatively narrow concentration range. The results obtained in this study confirm the relationship between gelation properties and polymer structure, as well as provide more information for these polymers in drug delivery applications. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 751–760, 1999 相似文献