首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We have used density-functional theory to investigate (111), (110), (210), (211), (100), and (310) surfaces of ceria (CeO2). Compared with previous interatomic-potential-based studies, our calculations reported a slightly different relative stability ordering and significantly lower surface energies for the stoichiometric surfaces. Using a defect model, the surface stabilities were evaluated as functions of oxygen partial pressure and temperature. Our investigations were restricted to ideal surface terminations, without considering defect formation on those surfaces. We found that at 300 K, the stoichiometric (111) has the lowest free energy for a wide range of oxygen partial pressures up to 1 atm, and only at ultrahigh vacuum does the Ce-terminated (111) becomes the most stable one. The transition point for the Ce-terminated (111) surfaces moves to higher oxygen partial pressures when temperature increases. To improve the prediction of electron density of states, we used the local-density approximation plus U(J) correction method to correct the on-site Coulomb correlation and exchange interaction due to the strongly localized Ce-4f electrons. The optimal parameter combination of U = 7 eV and J = 0.7 eV was found to improve the O 2p-Ce 4f gap without much degradation of ground-state bulk properties or the O 2p-Ce 5d gap. The bulk and surface electronic structures were then analyzed based on the improved density of states.  相似文献   

2.
Reconstruction of the most common pristine and hydrolyzed surfaces of quartz was investigated with periodic density functional theory calculations. Surface energies of reconstructed pristine faces, pertinent to quartz growth morphologies in melts, are found to range from 0.071 eV/A2 for the (101) surface to 0.139 eV/A2 for the (001) surface, and they increase as (101) < (102) < (112) < [(100), (111)] < (110) < (001). Four types of reconstruction reactions are observed: (1) formation of two-membered rings from vicinal silyl and siloxy sites, (2) formation of a pair of tricoordinated/unicoordinated oxygen atoms, (3) formation of three-membered rings, and (4) transformation of silanone sites into siloxane sites. The main features of reconstructed pristine quartz surfaces are two-membered rings formed from bridged siloxy and silyl sites on all investigated surfaces, a stable site complex with geminal positively charged tricoordinated and negatively charged unicoordinated oxygen atoms revealed on the (112) surface, and charged nonbridged siloxy/silyl sites, which are more stable than radical siloxy/silyl sites. Hydrolyzed surface energies range from -0.010 eV/A2 for the (001) surface to 0.002 eV/A2 for the (101) surface and increase as (001) < (110) < (102) < (111) < (100) < (112) < (101). The hydrolyzed surface stability is found to depend strongly on inter-site silanol hydrogen bonding. Observed networks of hydrogen bonds are important for interactions between silica surfaces and biomolecules in an aqueous environment.  相似文献   

3.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

4.
The bonding of the trimethylamine (TMA) and dimethylamine (DMA) with crystalline silicon surfaces has been investigated using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, and density-functional computational methods. XPS spectra show that TMA forms stable dative-bonded adducts on both Si(001) and Si(111) surfaces that are characterized by very high N(1s) binding energies of 402.2 eV on Si(001) and 402.4 eV on Si(111). The highly ionic nature of these adducts is further evidenced by comparison with other charge-transfer complexes and through computational chemistry studies. The ability to form these highly ionic charge-transfer complexes between TMA and silicon surfaces stems from the ability to delocalize the donated electron density between different types of chemically distinct atoms within the surface unit cells. Corresponding studies of DMA on Si(001) show only dissociative adsorption via cleavage of the N-H bond. These results show that the unique geometric structures present on silicon surfaces permit silicon atoms to act as excellent electron acceptors.  相似文献   

5.
使用密度泛函理论对Fe3O4(111),(110)和(001)的表面结构及稳定性进行了研究。Fe3O4(111)表面有六种不同的终结形式,其中以四面体或八面体铁层终结的结构最稳定。对于(110)和(001)表面而言,分别有两种终结,且能量相近。计算结果与实验结果非常吻合并且合理解释了实验结果的争议性和复杂性。表面自由能的计算表明,(111)表面在热力学上不如(110)和(001)表面稳定,它的形成应该是动力学控制过程。  相似文献   

6.
使用密度泛函理论对Fe3O4 (111),(110)和(001)的表面结构及稳定性进行了研究。Fe3O4 (111)表面有六种不同的终结形式,其中以四面体或八面体铁层终结的结构最稳定。对于(110)和(001)表面而言,分别有两种终结,且能量相近。计算结果与实验结果非常吻合并且合理解释了实验结果的争议性和复杂性。表面自由能的计算表明,(111)表面在热力学上不如(110)和(001)表面稳定,它的形成应该是动力学控制过程。  相似文献   

7.
采用DFT/BLYP方法对NbC(001)和(111)面的电子结构进行研究。计算结果表明,对于NbC(001)表面,其表面态主要集中于费米能级(EF)下方约4.5eV附近区域,并以表面Nb原子和C原子为主要成分。O2分子在该表面吸附时,趋向于吸附在表面Nb原子上。对于NbC(111)表面,其表面态集中在EF下方0.02.0eV区域,靠近EF的态具有较高的表面活性,其主要成分为表面Nb原子的4dxz/dyz成分。上述结论与光电子能谱实验结果基本一致;但由于金属原子d电子数的差异导致NbC(111)表面态成分与类似的TiC化合物并不相同。  相似文献   

8.
Pyrochlore lanthanum zirconate (La2Zr2O7) is a very promising candidate material for thermal barrier coating applications. However it may deteriorate by oxidizing gas such as CO2 during operating conditions. This paper investigates CO2 gas adsorption on La2Zr2O7 nanostructured coating surfaces using the density functional theory calculations. CO2 adsorption energies on (001), (011) and (111) planes in the La–Zr bridge positions have been calculated. The most favorable CO2 adsorption occurs on the (111) plane, which is confirmed by electron charge transfer and charge density difference analyses. La2Zr2O7 surface energies on (001), (011) and (111) planes have been calculated. Results show that (011) plane is the most thermodynamically stable plane due to its lowest surface energy.  相似文献   

9.
We have performed first-principle density functional theory calculations to investigate how a subsurface transition metal M (M = Ni, Co, or Fe) affects the energetics and mechanisms of oxygen reduction reaction (ORR) on the outermost Pt mono-surface layer of Pt/M(111) surfaces. In this work, we found that the subsurface Ni, Co, and Fe could down-shift the d-band center of the Pt surface layer and thus weaken the binding of chemical species to the Pt/M(111) surface. Moreover, the subsurface Ni, Co, and Fe could modify the heat of reaction and activation energy of various elementary reactions of ORR on these Pt/M(111) surfaces. Our DFT results revealed that, due to the influence of the subsurface Ni, Co, and Fe, ORR would adopt a hydrogen peroxide dissociation mechanism with an activation energy of 0.15 eV on Pt/Ni(111), 0.17 eV on Pt/Co(111), and 0.16 eV on Pt/Fe(111) surface, respectively, for their rate-determining O2 protonation reaction. In contrast, ORR would follow a peroxyl dissociation mechanism on a pure Pt(111) surface with an activation energy of 0.79 eV for its rate-determining O protonation reaction. Thus, our theoretical study explained why the subsurface Ni, Co, and Fe could lead to multi-fold enhancement in catalytic activity for ORR on the Pt mono-surface layer of Pt/M(111) surfaces.  相似文献   

10.
Wet chemical cleaning of silicon is a critical step, e.g., pre-gate clean, in the semiconductor manufacturing[1]. For example, pre-gate oxide cleaning demands ultra-clean silicon surface with least surface roughness. It is well known that metallic infinities and roughness cause the lower breakdown voltage in gate dielectric[2]. It has stringent requirements for ultra-clean and atomically flat silicon surface as the thickness of gate oxide is decreasing. In the present work, we have extended our study on Si(100) surface13] and extensively investigated wet chemical cleaning of Si(111) and Si(100) surfaces in NH4F-based solutions by using scanning tunneling microscopy (STM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and total reflection X-ray fluorescence spectrometry (TXRF). Surface roughness, organic contamination, metallic impurities and surface termination on the silicon surfaces after wet chemical cleaning with various NH4F-based solutions have been determined and compared with those treated with RCA cleans, HF solutions and other industrially used solutions. Our results indicate that ultra-clean and smooth Si(111) and Si(001) surfaces are obtained by treatment with NH4F-based solutions.  相似文献   

11.
Twenty kinds of adsorptions of HCN on the Fe(100), Fe(111) and Fe(110) surfaces at the 1/4 monolayer coverage are found using the density functional theory. For Fe(100), the adsorption energy of the most stable configuration where the HCN locates at the fourfold site with the C-N bonded to four Fe atoms is 1.928 eV. The most favored adsorption structure for HCN on Fe(111) is f-η3(N)-h-η3(C), in which the C-N bond is almost parallel to the surface, and the adsorption energy is 1.347 eV. On Fe(110), the adsorption energy in the most stable configuration in which HCN locates at the two long-bridge sites is 1.777 eV. The adsorption energy of the parallel orientation for HCN is larger than that of the perpendicular configuration. The binding mechanism of HCN on the Fe(100), Fe(111) and Fe(110) surfaces is also analyzed by Mulliken charge population and the density of states in HCN. The result indicates that the configurations in which the adsorbed HCN becomes the non-linear are beneficial to the formation of the addition reaction for hydrogen. The nature that the introduction of Fe into the catalyst could increase the catalytic activity of the bimetallic catalyst in the addition reaction of hydrogen for nitriles is revealed.  相似文献   

12.
采用密度泛函理论研究了M(M=In,Ir)原子修饰的M-Au(111)合金表面的稳定性,并选其最优模型探讨了合金表面的活性及其对巴豆醛的吸附。合金的几何构型、形成能和结合能等性质表明,In-Au(111)面的稳定性随In原子的间距增大而提高,Ir-Au(111)面的稳定性随Ir原子的间距增大而降低。对于巴豆醛在MAu(111)面上的吸附,当其通过C=O吸附于合金表面的TopM位时,吸附能最大,吸附构型最稳定。从巴豆醛的结构变化、态密度、差分电荷密度以及Mulliken电荷布居等分析可以看出,稳定吸附构型的巴豆醛分子形变较大,电荷转移明显。其中,位于-7.04 eV至费米能级处的p、d轨道杂化,对体系的吸附具有重要贡献。分析比较In-Au(111)面与Ir-Au(111)面,发现后者的配体效应更佳,不仅具有更高的稳定性和活性,而且对于巴豆醛具有更强的吸附力。此外,相比于改性前的Au(111)面,M原子的修饰明显提升了金属表面的稳定性及吸附能力。  相似文献   

13.
The perovskite SrTiO(3) is arguably one of the most important oxide systems in condensed matter research. In this study, we report measurement of the orientation dependence of oxygen exchange on SrTiO(3) single crystal surfaces by dynamic conductivity measurements under electrochemical perturbations. Activation energy for electrical conduction in the 923-1223 K range at an oxygen partial pressure of ~10(-11) Pa of (100), (111), and (110) single crystals was found to be 2.6 eV, 2.7 eV, and 3.1 eV, respectively. The equilibration kinetics show profound dependence on the surface orientation and are modelled using a heterogeneous relaxation process. All surfaces show similar cationic sub-lattice limited rate behavior with (111), (100), and (110) having the fastest, intermediate, and slowest rates, respectively. We discuss the orientation dependence and its relation to local atomic structure in light of previous experimental and theoretical studies.  相似文献   

14.
采用密度泛函理论(DFT)对苯乙烯在Ag(110)表面和Ag(111)表面的环氧化反应进行了计算研究. 经计算, 在Ag(110)表面预吸附氧原子更易吸附在3 重穴位(3h), 吸附能为-3.59 eV; 在Ag(111)表面预吸附氧原子的最稳定吸附位是fcc 位, 吸附能为-3.69 eV. 苯乙烯的环氧化反应过程首先经过一个金属中间体, 然后再进一步反应变为产物, 其中经过直链中间体较支链中间体更加有利. Ag(110)面的反应活化能一般大于Ag(111)面的, 并且微观动力学模拟结果表明, Ag(111)表面生成环氧苯乙烷的选择性要明显高于Ag(110)表面(0.38 与 0.003), 原因是Ag(111)面环氧化反应活化能小于苯乙醛及燃烧中间体的活化能, 而在Ag(110)上正相反.  相似文献   

15.
Oxide-terminated and Cl-terminated GaAs(111)A surfaces have been characterized in the As and Ga 3d regions by high-resolution, soft X-ray photoelectron spectroscopy. The Cl-terminated surface, formed by treatment with 6 M HCl(aq), showed no detectable As oxides or As(0) in the As 3d region. The Ga 3d spectrum of the Cl-terminated surface showed a broad, intense signal at 19.4 eV and a smaller signal at 21.7 eV. The Ga 3d peaks were fitted using three species, one representing bulk GaAs and the others representing two chemical species on the surface. The large peak was well-fitted by the bulk GaAs emission and by a second doublet, assigned to surface Ga atoms bonded to Cl, that was shifted by 0.34 eV from the bulk GaAs 3d emission. The smaller peak, shifted by 2.3 eV in binding energy relative to the bulk GaAs Ga 3d signal, is assigned to Ga(OH)3. The data confirm that wet chemical etching allows for the formation of well-defined, Cl-terminated GaAs(111)A surfaces free of detectable elemental As, that can provide a starting point for further functionalization of GaAs.  相似文献   

16.
This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O(2), C(2)H(4), SO(2), thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO(2) at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O(2) and perform the 2CO + O(2)→ 2CO(2) reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS(x) catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical reactivity of noble metals.  相似文献   

17.
The catalytic oxidation activity of platinum particles in automobile catalysts is thought to originate from the presence of highly reactive superficial oxide phases which form under oxygen-rich reaction conditions. Here we study the thermodynamic stability of platinum oxide surfaces and thin films and their reactivities toward oxidation of carbon compounds by means of first-principles atomistic thermodynamics calculations and molecular dynamics simulations based on density functional theory. On the Pt(111) surface the most stable superficial oxide phase is found to be a thin layer of alpha-PtO2, which appears not to be reactive toward either methane dissociation or carbon monoxide oxidation. A PtO-like structure is most stable on the Pt(100) surface at oxygen coverages of one monolayer, while the formation of a coherent and stress-free Pt3O4 film is favored at higher coverages. Bulk Pt3O4 is found to be thermodynamically stable in a region around 900 K at atmospheric pressure. The computed net driving force for the dissociation of methane on the Pt3O4(100) surface is much larger than that on all other metallic and oxide surfaces investigated. Moreover, the enthalpy barrier for the adsorption of CO molecules on oxygen atoms of this surface is as low as 0.34 eV, and desorption of CO2 is observed to occur without any appreciable energy barrier in molecular dynamics simulations. These results, combined, indicate a high catalytic oxidation activity of Pt3O4 phases that can be relevant in the contexts of Pt-based automobile catalysts and gas sensors.  相似文献   

18.
The dissociation and formation of water on the Rh(111) and Ni(111) surfaces have been studied using density functional theory with generalized gradient approximation and ultrasoft pseudopotentials. Calculations have been performed on 2x2 surface unit cells, corresponding to coverages of 0.25 ML, with spot checks on 3x3 surface unit cells (0.11 ML). On both surfaces, the authors find that water adsorbs flat on top of a surface atom, with binding energies of 0.35 and 0.25 eV, respectively, on Rh(111) and Ni(111), and is free to rotate in the surface plane. Barriers of 0.92 and 0.89 eV have to be overcome to dissociate the molecule into OH and H on the Rh(111) and Ni(111) surfaces, respectively. Further barriers of 1.03 and 0.97 eV need to be overcome to dissociate OH into O and H. The barriers for the formation of the OH molecule from isolated adsorbed O and H are found to be 1.1 and 1.3 eV, and the barriers for the formation of the water molecule from isolated adsorbed OH and H are 0.82 and 1.05 eV on the two surfaces. These barriers are found to vary very little as coverage is changed from 0.25 to 0.11 ML. The authors have also studied the dissociation of OH in the presence of coadsorbed H or O. The presence of a coadsorbed H atom only weakly affects the energy barriers, but the effect of O is significant, changing the dissociation barrier from 1.03 to 1.37 and 1.15 eV at 0.25 or 0.11 ML coverage on the Rh(111) surface. Finally, the authors have studied the dissociation of water in the presence of one O atom on Rh(111), at 0.11 ML coverage, and the authors find a barrier of 0.56 eV to dissociate the molecule into OH+OH.  相似文献   

19.
采用密度泛函理论研究了Pd(111)面和Ru-Pd(111)面的性质及对糠醛的吸附.原子尺寸因素、相对键长、形成能及d带中心等计算结果表明,Ru-Pd(111)面比Pd(111)面稳定且活性强,Ru的修饰优化了Pd(111)面的几何构型.糠醛在Pd(111)面及Ru-Pd(111)面的初始吸附位分别为P(top-bridge)位及P(Pd-fcc-Ru-fcc)位时,吸附能最大,吸附构型最稳定.由电荷布局和差分电荷密度可得,糠醛在Ru-Pd(111)面上电荷转移数更多,相互作用更强烈,因此吸附能更大.分析态密度可知,产生吸附的主要原因是位于-7.34 eV处至费米能级处的p,d轨道杂化.吸附于Ru-Pd(111)面后糠醛分子的p轨道向低能级偏移程度更明显,使Ru改性后的Pd催化剂具有更好的催化活性.  相似文献   

20.
以氧化镧催化剂在甲烷氧化偶联(OCM)反应中的结构敏感性实验研究为基础, 采用周期性密度泛函理论(DFT)计算研究氧化镧(001), (110)和(100)3个晶面及OCM反应物分子甲烷和氧在其上的吸附、 活化和解离. 结果表明, 氧化镧(001), (110)和(100)3个晶面的表面能大小顺序为(110)>(100)>(001), 3个晶面的价带和导带间隙大小顺序为(110)<(100)<(001), 即(001)是3个晶面中最稳定的晶面, 而(110)则是最活泼的晶面. 甲烷分子在氧化镧(001), (110)和(100)晶面上的吸附很弱(0.03 eV), H—CH3解离吸附能分别为2.16, 0.68和0.90 eV, 解离反应的难易性与晶面的活性顺序一致; 而氧分子在氧化镧(001), (110)和(100)晶面上的分子吸附能分别为-0.04, -0.31和-0.12 eV, 解离吸附能分别为1.22, 0.53和1.52 eV, 即氧化镧晶面结构对氧分子吸附具有明显的影响, 其中, (001)晶面上吸附最弱, (110)晶面上吸附最强, 以致O—O在(110)晶面上可以较低能垒(0.53 eV)解离, 形成亲电的过氧物种. 由于氧分子在氧化镧表面的吸附较甲烷分子强, 因此, 氧化镧在OCM反应中结构敏感性应与氧分子的吸附和活化密切相关. 甲烷和氧分子在氧化镧表面上活化的本质源自于电子自表面流向甲烷和氧分子的反键轨道, 且表面结构的改变会导致不同强度的电子流动驱动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号