首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three pseudorotaxanes (PpR) comprised of poly (ε-caprolactone) (PCL) and α-cyclodextrin (α-CD) with varying stoichiometric ratios were synthesized and characterized. Wide-angle X-ray diffraction (WAXD) and thermogravimetric (TGA) analyses provided conclusive evidence for complexation between the guest PCL and host α-CD. The as-synthesized and characterized PpRs were used at 10 and 20% concentrations as nucleants to promote the bulk PCL crystallization in composite films. Both WAXD and TGA provided evidence for intact PpR structures in the composite films. Isothermal differential scanning calorimetric (I-DSC) analyses, performed at various crystallization temperatures demonstrated significant differences in the crystallization patterns among the composite films. In addition, I-DSC analyses showed higher Avrami constant values (n) in the PpR-nucleated composite PCL films (n ~ 3), indicating 3-dimensional crystal growth. In the case of neat PCL films, however, lower n values indicated crystal growth in 1-dimensions or 2-dimensions. Moreover, atomic force microscopic analyses showed large crests and pits in PpR-nucleated PCL composites, with irregular morphologies leading to higher surface roughness. To the contrary, the crests and pits were much smaller in the neat PCL films, resulting in lower surface roughness values. Finally, mechanical testing revealed higher tensile strength for PpR-nucleated PCL composites films, demonstrating larger load bearing capabilities. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1529–1537  相似文献   

2.
Bio-based poly(isosorbide 2,5-furandicarboxylate-co-ε-caprolactone) (PIFCL) copolyesters were synthesized from 2,5-furandicarboxylic acid, isosorbide and ε-caprolactone. The obtained copolyesters were characterized by 1H NMR, 13C NMR, intrinsic viscosity, GPC, DSC, TGA and tensile testing. The NMR characterization results confirmed the insertion of lactones units into poly(isosorbide 2,5-furandicarboxylate) (PIF) chains. All PIFCL copolyesters were amorphous with TD, 5% higher than 300 °C. The glass transition temperatures of PIFCLs with FDCA molar ratio from 74% to 45% were within the range of 132.1 °C and 72.4 °C. Tensile testing revealed that introduction of ε-caprolactone into PIF chain imparted PIFCL with excellent mechanical performance, typically, PIFCL polyseter with FDCA molar ratio of 45% had a Young's modulus 858 ± 92 MPa, a tensile strength 44 ± 4 MPa and an elongation at break 480 ± 45%.  相似文献   

3.
Poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) (PCL-b-PVCL) block copolymers were synthesized as new biocompatible, thermosensitive, amphiphilic block polymers by a combination of ring-opening polymerization and reversible addition–fragmentation chain transfer (RAFT) polymerization, and their thermosensitive micellar behavior was examined. The PCL macro-chain-transfer agent was first synthesized by converting the end group of PCL-OH to O-ethyl xanthate, which was subsequently used for the RAFT polymerization of N-vinylcaprolactam. The critical micelle concentration of PCL-b-PVCL (M n,NMR?=?56,300?g/mol, polydispersity index?=?1.18) was 0.026?mg/mL. The mean diameter of the PCL-b-PVCL micelles determined by transmission electron microscopy was 55?±?25?nm. The PCL-b-PVCL micelles exhibited repetitive aggregation and dispersion during reversible cooling and heating cycles between 20 and 40?°C due to the thermosensitive behavior of the PVCL shell. Overall, the PCL-b-PVCL block copolymers have potential applications in thermosensitive drug delivery applications.  相似文献   

4.
Novel amphiphilic copolymers based on poly(ε-caprolactone) (PCL) and hyperbranched poly (amine-ester) (HPAE) with various compositions were synthesized. The amphiphilic copolymers can self-assemble into nanoscopic micelles and their hydrophobic cores can encapsulate doxorubicin (DOX) in aqueous solutions. The DOX-loaded HPAE-co-PCL nanoparticles diameter increased from 121 to 184 nm with the increasing PCL segment in the copolymer composition. An in vitro study at 37°C demonstrated that DOX-release from nanoparticles at pH 5.0 was much faster than that at pH 7.4. The cytotoxicity for HeLa cells study demonstrated that DOX-loaded HPAE-co-PCL nanoparticles exhibited the anti-tumor effect was enhanced significantly, suggesting that the DOX-loaded HPAE-co-PCL nanoparticles have great potential as a tumor drug carrier.  相似文献   

5.
Thermodegradative investigations of two classes of multi-block copolymers containing poly(D,L-lactic-glycolic acid) (PLGA) and either poly(ethylene glycol) (PEG) or poly(ϵ-caprolactone) diol-terminated (PCDT) segments were performed. In particular, the influence of the type and length of the segments as well as of the molar ratio between the D,L-lactic acid (LA) and glycolic acid (GA) residues was investigated at 180°C in air by viscometry, FT-IR analysis and isothermal thermogravimetry. The thermal oxidative degradation of these materials is largely affected by the LA/GA ratio, a higher LA content generally imparting higher stability. The FT-IR analysis suggests that, depending on the composition of the PLGA segments, degradative processes are triggered which can lead to a preferential degradation of the blocks.  相似文献   

6.
7.
Polymers of ε-caprolactone were synthesized by microwave-assisted polymerization initiated with polyethylene glycols (PEG 200 and PEG 300) and monodisperse diols (mono-, di-, tri-, tetra- and hexaethylene glycol) and tin octoate as catalyst. These polymers were characterized by different chromatographic techniques (SEC, LAC and LCCC) and MALDI-TOF-MS. A comparison with commercially available polycaprolactone diols with molecular weight 530 and 830 showed that the new polymers had a much higher content of triblock structures, while the commercial samples contained considerable amounts of diblocks.  相似文献   

8.
Blends of chitosan and poly(ε-caprolactone-co-2-oxepane-1,5-dione) (PCO) were fabricated by solvent casting technique using 77% acetic acid as the cosolvent. The interactions between chitosan and PCO were analyzed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and differential scanning calorimetry. The miscibility became poorer with increase of PCO from 50% to 75%, which was supported by the Flory–Huggins interaction parameter and crystallinity of PCO. According to X-ray pattern, crystallinity of CS became weaker when PCO content was improved. Results indicated that there existed stronger interactions in comparison with PCL/CS blends. Therefore, the addition of functional polyester PCO made the brittle chitosan ductile. The elongation was significantly prolonged to 21.60 ± 4.92% with the break stress maintaining about 32 MPa, better than that of PCL blends. The degradation behavior showed slower degradation rate compared with pure CS and the morphology was illustrated by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

9.
A blend of poly(ε-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) containing 27.5 wt% of acrylonitrile having the critical composition (80/20 PCL/SAN) was studied. This PCL/SAN blend having a lower critical solution temperature (LCST) phase boundary at 122 °C offered an excellent opportunity to investigate, firstly the kinetics of phase separation above LCST (125-180 °C), and secondly the kinetics of phase dissolution below LCST (50-115 °C). The blend underwent a temperature-jump above LCST where spinodal decomposition (SD) proceeded, yielding a regularly phase-separated structure (SD structure). Then, it was quenched to the temperatures below LCST when the phase dissolution proceeded. Optical microscopy was used to observe the spinodal decomposition qualitatively while light scattering was used to characterize the phase separation and phase dissolution quantitatively. It was found that during phase dissolution the peak maximum moved towards a smaller angle (wavelength of concentration fluctuations increased) while the peak intensity decreased. This behavior was explained by a model. Also it was found that the fastest phase dissolution kinetics at 80 °C, which was characterized by an apparent diffusion coefficient, was about 10 times slower than the kinetics of phase separation at 180 °C.  相似文献   

10.
A series of amphiphilic copolymers, dextran-graft-methoxypolyethylene glycol/poly(ε-caprolactone) (Dex-g-mPEG/PCL) were synthesized by grafting both PCL and mPEG chains to dextran, and subsequently the micellar self-assembly behavior of resultant copolymers was investigated. PCL was designed by using Fmoc-protected valine other than organometallic catalyst as the initiator to ring-opening polymerize ε-caprolactone (CL) in view of the safety demand as well as the extra application potential resulting from -NH2 group introduced after Fmoc deprotection. All the copolymers were characterized by 1H NMR, FT-IR and GPC measurements. The prepared copolymers are capable of self-assembling into nanosized spherical micelles in aqueous solution with the diameter of around 100-200 nm determined by TEM image and DLS measurement. The critical micellar concentration (CMC) of the graft copolymers is in the range of 10-100 mg/L determined by the fluorescence robe technique using pyrene. The result also indicated that the CMC of self-assembled micelles could be adjusted by controlling the degree of substitution of mPEG and PCL, and these micelles may find great potential as drug carriers in biomedical fields.  相似文献   

11.
The objective of the present study is to achieve doxycycline’s maximum therapeutic efficacy. Doxycycline-loaded poly(ε-caprolactone) microspheres were prepared by water-in-oil-in-water (w/o/w) double emulsion solvent evaporation technique with different formulation variables such as concentrations of drug and polymer. The effects of these variables on surface morphology, particle size distribution, encapsulation efficiency, and in vitro release behavior were examined. To observe the nature of microspheres, X-ray diffraction studies were carried out. The release data obtained were determined using various kinetic models and Korsmeyer–Peppas model showed an acceptable regression value for all compositions. Antibacterial efficiency of doxycycline-loaded poly(ε-caprolactone) microspheres were assessed by determining Minimum Inhibition Concentration (MIC) by standard tube dilution method against four standard pathogenic strains. The in vitro drug release studies were carried out in phosphate buffer solution (pH 7.2). The results showed marked retardation of doxycycline release and higher percentage of polymer gave longer drug release profile. This may definitely provide a useful controlled-release drug therapy and also prove to be effective over a long period of time (76 h).  相似文献   

12.
The effect of a low profile additive, poly(ε-caprolactone) (PCL), on the thermal and mechanical properties of unsaturated polyester resins (UP) was investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile tests. The morphology of the systems has been studied by scanning electronic microscopy (SEM). Two PCL molecular mass were selected (PCL2: M n = 2000 g mol−1 and PCL50: M n = 50000 g mol−1) to analyze the influence of the molecular mass and the content of PCL on the UP resins and to establish the relation between thermomechanical behavior and morphology. DSC and DMTA glass transition temperatures (T g) of the UP cured samples containing PCL indicate that PCL2 is miscible with UP whereas for UP + PCL50 system, T g values are very close to the ones corresponding to neat UP. Besides in UP + PCL2 systems, one phase morphology is observed in which PCL2 would act as solvent of the reacting mixture along curing process; however, UP + PCL50 systems present phase-separated morphology. The presence of PCL2 and PCL50 in UP resin leads to a decrease of the tensile strength and the Young′s modulus as much notorious as the PCL concentration increases. For UP + PCL2 system the elongation at fracture increases in relation to neat UP, increasing as well with the PCL content.  相似文献   

13.
Binary blends based on poly(vinyl chloride) (PVC) were prepared both by casting from tetrahydrofuran (THF) and by mixing in the melt form, in a discontinuous mixer, PVC and multi-block copolymers containing poly(ϵ-caprolactone) (PCDT) and poly(ethylene glycol) (PEG) segments. PCDT-PEG copolymers were synthesized using a polycondensation reaction where the α,ω-bis-chloroformate of an oligomeric poly(ϵ-caprolactone) diol terminated (PCDT) and oligomeric PEG were employed as macromonomers. For comparison purposes, blends PVC with starting oligomers as well as with mixtures containing a typical low molecular plasticizer, dioctylphthalate (DOP), were also prepared. The copolymer miscibility was studied by differential scanning calorimetry (DSC) and FT-IR spectroscopy. The blend morphology was investigated by polarized light microscopy (PLM). A higher miscibility with PVC was observed for copolymers compared to PEG.  相似文献   

14.
Well-defined graft copolymers were obtained using a copper-catalysed azide-alkyne Huisgen's cycloaddition click reaction from both biocompatible and non-toxic poly(ε-caprolactone) and poly(2-methyl-2-oxazoline) homopolymers. Resulting amphiphilic copolymers proved to form micelles that could be used as potential drug carriers.  相似文献   

15.
Copolyesters containing ε-caprolactone and l-lactide or ε-caprolactone and δ-valerolactone at different compositions were synthesized by using tetrabutoxytitane Ti(OBu)4 at high temperature in bulk. A series of copolyesters were prepared by varying the compositions of both comonomers. These copolymers were characterized by using 1H NMR, 13C NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and MALDI-TOF mass spectrometry. 13C NMR analysis gave an insight on their microstructure. Structural parameters of the copolymers were obtained by calculating the triad sequence fractions. Poly(ε-caprolactone-co-l-lactide) has a more alternate structure than poly(ε-caprolactone-co-δ-valerolactone). The potential use of these copolyesters in antifouling coatings was examined because of their solubility in aromatic solvent and their hydration and hydrolytic degradation. Paints based on these new degradable binders had a good antifouling activity in Atlantic Ocean (France).  相似文献   

16.
Thermal degradation of a serials of star-shaped poly(?-caprolactone) (PCL) with well-defined arm numbers and arm length was investigated. The weight loss of star-shaped PCL during heating process showed a two-stage character, and its dependence on molecular weight and multi-armed structure was well discussed. It was found that the thermal stability could be improved not only by increasing molecular weight but also by increasing arm numbers when the molecular weight is in a certain range. Based on the analyses of pyrolytic products by 1H NMR and TGA-FTIR, two mechanisms of thermal degradation for the random cleavage of ester bonds of PCL chains were proposed. Ester bonds were pyrolyzed into alkene and carboxyl functional groups in mechanism I while they were pyrolyzed into ketene and hydroxyl functional groups in mechanism II. The effects of multi-armed structure of star-shaped PCL on the cleavage of ester bonds of PCL chains were discussed in terms of the limitation of central “core” on mobility of each PCL arm. Combined the results of viscosity analysis with thermal analysis, it could be concluded that both thermal stability and processability of PCL materials can be improved by controlling the multi-armed structures.  相似文献   

17.
Segmented poly(ether-ester-amide)s, (PEEA)s, of controlled hydrophilicity degree, based on poly(ε-caprolactone) (PCL), were synthesized according to a facile two-step procedure using α,ω-dihydroxy oligomeric PCL, 4,7,10-trioxa-1,13-tridecanediamine and macromers prepared from poly(ethylene glycol)s and adipoyl chloride. The PEEAs showed M n values in the range 5–11.5 kDa. A PCL-type crystallinity was found by WAXS. DSC indicated Tm values (49–51 °C) close to that of PCL macromer. Single glass transitions were observed both by DSC and DMTA techniques and the Tg values (−58–−50 °C by DSC) were slightly higher than that of PCL. The water uptake was in the range 4.8–26.0 wt.-% depending on the length of the poly(ethylene glycol) segment.

Monomers used to prepare the PEEAs.  相似文献   


18.
魏志勇  齐民 《高分子科学》2013,31(8):1148-1160
A series of nanocomposites based on poly(ε-caprolactone) (PCL) and graphene oxide (GO) were prepared by in situ polymerization. Scanning electron microscopy observation revealed not only a well dispersion of GO but also a strong interfacial interaction between GO and the PCL matrix, as evidenced by the presence of some GO nanosheets embedded in the matrix. Effects of GO nanofillers on the crystal structure, crystallization behavior and spherulitic morphology of the PCL matrix were investigated in detail. The results showed that the crystallization temperature of PCL enhanced significantly due to the presence of GO in the nanocomposites, however, the addition of GO did not affect the crystal structure greatly. Thermal stability of PCL remarkably increased with the addition of GO nanosheets, compared with that of pure PCL. Incorporation of GO greatly improved the tensile strength and Young’s modulus of PCL without a significant loss of the elongation at break.  相似文献   

19.
Epoxy resin/4,4′-diaminodiphenylsulfone (DDS) system was modified by the incorporation of poly(ε-caprolactone)-block-poly(dimethyl siloxane)-block-poly(ε-caprolactone) (PCL–PDMS–PCL) triblock copolymer (TBCP). Morphology, viscoelasticity, thermo-mechanical and surface properties of these blends were investigated. All the blends were opaque after curing. PCL blocks of the TBCP were miscible with epoxy resin while the PDMS fraction was immiscible. However in the cured state, both PCL and PDMS blocks were phase separated from epoxy/DDS matrix. The blends exhibited matrix-droplet morphology in which TBCP phase dispersed as spherical domains in epoxy matrix. Addition of TBCP had profound impact on the cure reaction kinetics. Storage modulus and glass transition temperature (Tg) decreased while impact strength significantly increased. Incorporation of 15 phr of TBCP resulted in 80% improvement in impact strength. Further, thermal stability was unaffected while surface hydrophobicity of the blends increased.  相似文献   

20.
Copolyesteramides of 2-pyrrolidone with ε-caprolactone were synthesized by ring-opening copolymerization. The copolymers were random-like and their melting temperature and heat of fusion were dependent on the polymer composition. Biodegradation by a polyamide 4 (PA4) degrading microorganism showed rapid degradation in the region of amide-rich polymer composition. On the contrary, enzymatic hydrolysis using a lipase resulted in a different tendency, that is, ester-rich copolymers hydrolyzed rapidly. Activated sludge makes copolymers degrade to CO2 in wide polymer composition ratio. Copolyesteramides are expected to be applied as an environmentally-friendly plastics or bioabsorbable polymers in medical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号