首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(β-benzyl-l-aspartate)-block-poly(vinylpyrrolidone) diblock copolymers (PAsp(OBzl)-b-PVP) having both hydrophobic and hydrophilic segments of various lengths were synthesized by a combination of ATRP and ROP. These amphiphilic diblock copolymers formed polymeric micelles consisting of a hydrophobic PAsp(OBzl) core and a hydrophilic PVP shell in aqueous solution. The block copolymer was characterized using 1H NMR and gel permeation chromatography (GPC) analysis. Due to its core–shell structure, this block polymer forms unimolecular micelles in aqueous solutions. The micelle properties of PAsp(OBzl)-b-PVP diblock copolymer were extensively studied by dynamic light scattering (DLS), fluorescence spectroscopy, and transmission electron microscopy (TEM). PAsp(OBzl)-b-PVP copolymers displayed the lowest CMC and demonstrated little cytotoxicity when exposed to SW-1990 pancreatic cancer cells. In order to assess its application in biomedical area, the anti-inflammation drug prednisone acetate was loaded as the model drug in the polymeric nanoparticles. In vitro release behavior of prednisone acetate was investigated, which showed a dramatic responsive fast/slow switching behavior according to the pH-responsive structural changes of a micelle core structure. All of theses features are quite feasible for utilizing it as a novel intelligent drug-delivery system.  相似文献   

2.
Versatile miktoarm three-arm star polymers, (polystyrene)(polyε-caprolactone)2 ((PS)(PCL)2), (PS-b-poly(n-butyl acrylate))(PCL-b-PS-b-poly(n-butyl acrylate))2 ((PS-b-PnBA)(PCL-b-PS-b-PnBA)2) and (PtBA-b-PS)(PCL-b-PtBA-b-PS)2 were synthesized via combination of atom-transfer radical polymerization (ATRP), functional group transformation technique and ring opening polymerization (ROP) using 1,1-dihydroxymethyl-1-(2-bromoisobutyryloxy)methyl ethane (DHB) as a heterofunctional initiator. In the synthesis of (PS)(PCL)2 by combination of ROP of ε-caprolactone (ε-CL) and ATRP, the implementation sequence, ROP followed by ATRP, was proved to be effective to get a well-defined miktoarm star polymer than the reverse one. The two miktoarm star block polymers, (PS-b-PnBA)(PCL-b-PS-b-PnBA)2 and (PtBA-b-PS)(PCL-b-PtBA-b-PS)2, were prepared by one ROP step, one group transformation and ATRP steps using the same initiator. All the polymers have defined structures and their molecular weights are adjustable with good controllability.  相似文献   

3.
ABC-type miktoarm star polymers, poly(ethylene oxide)-block-polystyrene-block-poly (ε-caprolactone)s (PEO-b-PS-b-PCL) were synthesized via combination of “click” chemistry, atom-transfer radical polymerization (ATRP) and ring opening polymerization (ROP). Azide ended PEO arms, PEO-N3, and a trifunctional molecule, propargyl 2-hydroxylmethyl-2-(α-bromoisobutyraloxymethyl)-propionate (PHBP), were prepared first, respectively. A “click” reaction of PEO-N3 and PHBP generated a PEO macroinitiator, PEO-(Br)(OH) with two functionalities, one is hydroxyl group and the other is α-bromoisobutyraloxyl group. Consecutive ATRP of styrene (St) and ROP of ε-caprolactone (ε-CL) from the PEO macroinitiator produced the PEO-b-PS-b-PCL miktoarm stars. All the structures of the polymers were determined.  相似文献   

4.
Atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) were combined to synthesize various polymers with various structures and composition. Poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate), PCL-PODMA, was prepared using both sequential and simultaneous polymerization methods. Kinetic studies on the simultaneous process were performed to adjust the rate of both polymerizations. The influence of tin(II) 2-ethylhexanoate on ATRP was investigated, which led to development of new initiation methods for ATRP, i.e., activators (re)generated by electron transfer (AGET and ARGET). Additionally, block copolymers with two crystalizable blocks, poly(ε-caprolactone)-b-poly(n-butyl acrylate)-b-poly(n-octadecyl methacrylate), PCL-PBA-PODMA, block copolymers for potential surfactant applications poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate-co-dimethylaminoethyl methacrylate), PCL-P(ODMA-co-DMAEMA), and a macromolecular brush, poly(hydroxyethyl methacrylate)-graft-poly(ε-caprolactone), PHEMA-graft-PCL, were prepared using combination of ATRP and ROP.  相似文献   

5.
We report novel micellar carriers, comprising pendant cinnamyl moieties in the core-forming block, designed to increase the solubilization of caffeic acid phenethyl ester (CAPE) in aqueous media. Amphiphilic poly(ethylene oxide)-block-poly(α-cinnamyl-ε-caprolactone-co-ε-caprolactone) (PEO-b-P(CyCL-co-CL) diblock copolymers were synthesized by ring-opening copolymerization of α-propargyl-ε-caprolactone and ε-caprolactone from a monofunctional PEO macroinitiator and subsequent attachment of cinnamyl groups via click reaction. In addition, a linear PEO-b-PCL diblock copolymer was synthesized and used in this study for comparison. Next, nanosized micelles from PEO-b-P(CyCL-co-CL) and PEO-b-PCL were formed via the solvent evaporation method and then loaded with CAPE. Dynamic and electrophoretic light scattering, and transmission electron microscopy were used to characterize both blank and loaded carriers. The potential of the micelles comprising pendant cinnamyl group to solubilize CAPE in water was evaluated in a comparative fashion to that of nonmodified PEO-b-PCL diblock copolymer.  相似文献   

6.
pH-responsive micelles with a biodegradable PLA core and a mixed PEG/PDPA shell were prepared by self-assembly of poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) and poly(2-(diisopropylamino)ethyl methacrylate)-b-poly(lactic acid) (PDPA-b-PLA). The micellization status with different pH and the enzyme degradation behavior were characterized by 1H-NMR spectroscopy, dynamic light scattering measurement and zeta potential test. The pH turning point of PDPA block was determined to be in the range of 5.5?7.0. While the pH was above 7.0, the PDPA block collapsed onto the PLA core and could protect the PLA core from invasion of enzyme, as a result, the micelle exhibited a resistance to the enzymatic degradation.  相似文献   

7.
We report the first example of the synthesis and the “schizophrenic” micellization behavior of a multi‐responsive double hydrophilic ABC miktoarm star terpolymer. A well‐defined miktoarm star terpolymer consisting of poly(ethylene glycol), poly(2‐(diethylamino)ethyl methacrylate), and poly(N‐isopropylacrylamide) arms, PEG(‐b‐PDEA)‐b‐PNIPAM, was synthesized via the combination of atom transfer radical polymerization (ATRP) and click reaction. Containing pH‐responsive PDEA and thermo‐responsive PNIPAM arms, this novel type of miktoarm star terpolymer molecularly dissolves in aqueous solution at acidic pH and room temperature, but supramolecularly self‐assembles into PDEA‐core micelles at alkaline pH and room temperature, and PNIPAM‐core micelles at acidic pH and elevated temperatures. Most importantly, both types of micellar aggregates possess well‐solvated hybrid coronas.

  相似文献   


8.
通过大分子引发剂ω-胺基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和酸性水解制备了一种具有pH-响应性的三嵌段共聚物聚乙二醇-聚谷氨酸-聚丙氨酸(mPEG-PLGA-PLAA).通过核磁共振、ζ-电势、动态光散射、电子显微镜等手段表征了此类三嵌段共聚物的自组装过程及所形成胶束的pH-响应性.使用圆二色谱和红外光谱,分析了胶束结构随环境pH值转变过程中聚氨基酸链段二级结构的变化.以阿霉素作为模型药物,研究了三嵌段共聚物的载药能力和在不同pH条件下的药物释放能力.在碱性条件下,PLGA链段去质子化,链段从疏水性变为亲水性,胶束中间层由于水合作用变得松散,药物释放速率增加;在酸性条件下,PLGA链段质子化,不带电荷,与阿霉素药物分子间的静电相互作用消失.同时,PLGA链段α-螺旋含量增加,形成由链内氢键维持的刚性棒状结构,将链段周围包埋的药物分子"挤出",加速了药物的释放.  相似文献   

9.
Four-arm star block polymers consisting of hydrophobic poly(?-caprolactone) (PCL) block and hydrophilic poly(2-(diethylamino) ethyl methacrylate)) (PDEAEMA) block were successfully synthesized by ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Chain lengths of PDEAEMA segments were varied to obtain a series of star copolymers with different hydrophilic/hydrophobic ratio, which were desired for self-assembly study. Dynamic light scattering (DLS) and transmission electron microscopic (TEM) were used to study their self-assembly behavior. In the PBS solution with different pH value, the star polymers formed micelles or nanoparticles. Furthermore, the morphologies of the micelles were also pH-dependent. Critical micelle concentrations of star copolymers changed from 5.0 to 17.5 mg/L with the increase of hydrophilic block length or the pH decrease. Moreover, a steady increase was found on the micelles diameters when the pH decreased from 7.0 to 3.0. The low CMC value and slight changes on micelle diameter indicated that the micelle remained stable under the changing external stimulus.  相似文献   

10.
Well‐defined amphiphilic and thermoresponsive ABC miktoarm star terpolymer consisting of poly(ethylene glycol), poly(tert‐butyl methacrylate), and poly(N‐isopropylacrylamide) arms, PEG(‐b‐PtBMA)‐b‐PNIPAM, was synthesized via a combination of consecutive click reactions and atom transfer radical polymerization (ATRP). Click reaction of monoalkynyl‐terminated PEG with a trifunctional core molecule bis(2‐azidoethyl)amine, (N3)2? NH, afforded difunctional PEG possessing an azido and a secondary amine moiety at the chain end, PEG‐NH? N3. Next, the amidation of PEG‐NH? N3 with 2‐chloropropionyl chloride led to PEG‐based ATRP macroinitiator, PEG(? N3)? Cl. The subsequent ATRP of N‐isopropylacrylamide (NIPAM) using PEG(? N3)? Cl as the macroinitiator led to PEG(? N3)‐b‐PNIPAM bearing an azido moiety at the diblock junction point. Finally, well‐defined ABC miktoarm star terpolymer, PEG(‐b‐PtBMA)‐b‐PNIPAM, was prepared via the click reaction of PEG(? N3)‐b‐PNIPAM with monoalkynyl‐terminated PtBMA. In aqueous solution, the obtained ABC miktoarm star terpolymer self‐assembles into micelles consisting of PtBMA cores and hybrid PEG/PNIPAM coronas, which are characterized by dynamic and static laser light scattering, and transmission electron microscopy. On heating above the phase transition temperature of PNIPAM in the hybrid corona, micelles initially formed at lower temperatures undergo further structural rearrangement and fuse into much larger aggregates solely stabilized by PEG coronas. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4001–4013, 2009  相似文献   

11.
Biodegradable amphiphilic ABC Y‐shaped triblock copolymer (MPBC) containing PEG, PBLA, and PCL segments was synthesized via the combination of enzymatic ring‐opening polymerization (ROP) of epsilon‐caprolactone, ROP of BLA‐N‐carboxyanhydride and click chemistry, where PEG, PBLA, and PCL are poly(ethylene glycol), poly(benzyl‐l ‐aspartate), and polycaprolactone, respectively. Propynylamine was employed as ROP initiator for the preparation of alkynyl‐terminated PBLA and methyloxy‐PEG with hydroxyl and azide groups at the chain‐end was used as enzymatic ROP initiator for synthesis of monoazido‐midfunctionalized block copolymer mPEG‐b‐PCL. The subsequent click reaction led to the formation of Y‐shaped asymmetric heteroarm terpolymer MPBC. The polymer structures were characterized by different analyses. The MPBC terpolymer self‐assembled into micelles and physically encapsulated drug doxorubicin (DOX) to form DOX‐loaded micelles, which showed good stability and slow drug release. In vitro cytotoxicity study indicated that the MPBC micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3346–3355  相似文献   

12.
A new atom transfer radical polymerization (ATRP) initiator, namely, 2‐(1‐(2‐azidoethoxy)ethoxy)ethyl 2‐bromo‐2‐methylpropanoate containing both “cleavable” acetal linkage and “clickable” azido group was synthesized. Well‐defined azido‐terminated poly(N‐isopropylacrylamide)s (PNIPAAm‐N3)s with molecular weights and dispersity in the range 11,000–19,000 g mol?1 and 1.20–1.28, respectively, were synthesized employing the initiator by ATRP. Acetal containing PCL‐b‐PNIPAAm block copolymer was obtained by alkyne–azide click reaction of azido‐terminated PNIPAAm‐N3 with propargyl‐terminated PCL. Critical aggregation concentration (CAC) of PCL‐b‐PNIPAAm copolymer in aqueous solution was found to be 8.99 × 10?6 M. Lower critical solution temperature (LCST) of PCL‐b‐PNIPAAm copolymer was found to be 32 °C which was lower than that of the precursor PNIPAAm‐N3 (36.4 °C). The effect of dual stimuli viz . temperature and pH on size and morphology of the assemblies of PCL‐b‐PNIPAAm block copolymer revealed that the copolymer below LCST assembled in spherical micelles which subsequently transformed to unstable vesicles above the LCST. Heating these assemblies above 40 °C led to the precipitation of PCL‐b‐PNIPAAm block copolymer. Whereas, at decreased pH, micelles of PCL‐b‐PNIPAAm copolymer disintegrate due to the cleavage of acetal linkage and precipitation of hydrophobic hydroxyl‐terminated PCL. The encapsulated pyrene release kinetics from the micelles of synthesized PCL‐b‐PNIPAAm copolymer was found to be faster at higher temperature and at lower pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1383–1396  相似文献   

13.
We report on the one‐pot synthesis of well‐defined ABC miktoarm star terpolymers consisting of poly(2‐(dimethylamino)ethyl methacrylate), poly(ε‐caprolactone), and polystyrene or poly(ethylene oxide) arms, PS(‐b‐PCL)‐b‐PDMA and PEO (‐b‐PCL)‐b‐PDMA, taking advantage of the compatibility and mutual tolerability of reaction conditions (catalysts and monomers) employed for atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and click reactions. At first, a novel trifunctional core molecule bearing alkynyl, hydroxyl group, and bromine moieties, alkynyl(? OH)? Br, was synthesized via the esterification reaction of 5‐ethyl‐5‐hydroxymethyl‐2,2‐dimethyl‐1,3‐dioxane with 4‐oxo‐4‐(prop‐2‐ynyloxy)butanoic acid, followed by deprotection and monoesterification of alkynyl(? OH)2 with 2‐bromoisobutyryl bromide. In the presence of trifunctional core molecule, alkynyl(? OH)? Br, and CuBr/PMDETA/Sn(Oct)2 catalytic mixtures, target ABC miktoarm star terpolymers, PS(‐b‐PCL)‐b‐PDMA and PEO(‐b‐PCL)‐b‐PDMA, were successfully synthesized in a one‐pot manner by simultaneously conducting the ATRP of 2‐(dimethylamino)ethyl methacrylate (DMA), ROP of ε‐caprolactone (ε‐CL), and the click reaction with azido‐terminated PS (PS‐N3) or azido‐terminated PEO (PEO‐N3). Considering the excellent tolerability of ATRP to a variety of monomers and the fast expansion of click chemistry in the design and synthesis of polymeric and biorelated materials, it is quite anticipated that the one‐pot concept can be applied to the preparation of well‐defined polymeric materials with more complex chain architectures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3066–3077, 2009  相似文献   

14.
We report the synthesis of a novel pH‐responsive amphiphilic block copolymer poly(dimethylaminoethyl methacrylate)‐block‐poly(pentafluorostyrene) (PDMAEMA‐b‐PPFS) using RAFT‐mediated living radical polymerization. Copolymer micelle formation, in aqueous solution, was investigated using fluorescence spectroscopy, static and dynamic light scattering (SLS and DLS), and transmission electron microscopy (TEM). DLS and SLS measurements revealed that the diblock copolymers form spherical micelles with large aggregation numbers, Nagg ≈ 30 where the dense PPFS core is surrounded by dangling PDMAEMA chains as the micelle corona. The hydrodynamic radii, Rh of these micelles is large, at pH 2–5 as the protonated PDMAEMA segments swell the micelle corona. Above pH 5, the PDMAEMA segments are gradually deprotonated, resulting in a lower osmotic pressure and enhanced hydrophobicity within the micelle, thus decreasing the Rh. However, the radius of gyration, Rg remains independent of pH as the dense PPFS cores predominate.

  相似文献   


15.
Novel biocompatible, biodegradable, four‐arm star, triblock copolymers containing a hydrophobic poly(ε‐caprolactone) (PCL) segment, a hydrophilic poly(oligo(ethylene oxide)475 methacrylate) (POEOMA475) segment and a thermoresponsive poly(di(ethylene oxide) methyl ether methacrylate) (PMEO2MA) segment were synthesized by a combination of controlled ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, a four‐arm PCL macroinitiator [(PCL‐Br)4] for ATRP was synthesized by the ROP of ε‐caprolactone (CL) catalyzed by stannous octoate in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2‐bromoisobutyryl bromide. Then, sequential ATRP of oligo(ethylene oxide) methacrylate (OEOMA475, Mn = 475) and di(ethylene oxide) methyl ether methacrylate) (MEO2MA) were carried out using the (PCL‐Br)4 tetrafunctional macroinitiator, in different sequence, resulting in preparation of (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 and (PCL‐b‐PMEO2MA‐b‐POEOMA475)4 star triblock copolymers. These amphiphilic copolymers can self‐assemble into spherical micelles in aqueous solution at room temperature. The thermal responses of the polymeric micelles were investigated by dynamic light scattering and ultraviolet spectrometer. The properties of the two series of copolymers are quite different and depend on the sequence distribution of each block along the arms of the star. The (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 star copolymer, with the thermoresponsive PMEO2MA segment on the periphery, can undergo reversible sol‐gel transitions between room temperature (22 °C) and human body temperature (37 °C). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The formation of spherical micelles in aqueous solutions of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP-b-PEO and poly(acrylic acid)-block-poly(vinyl alcohol), PAA-b-PVOH has been investigated with light scattering-titrations, dynamic and static light scattering, and 1H 2D Nuclear Overhauser Effect Spectroscopy. Complex coacervate core micelles, also called PIC micelles, block ionomer complexes, and interpolyelectrolyte complexes, are formed in thermodynamic equilibrium under charge neutral conditions (pH 8, 1 mM NaNO3, = 25 °C) through electrostatic interaction between the core-forming P2MVP and PAA blocks. 2D 1H NOESY NMR experiments show no cross-correlations between PEO and PVOH blocks, indicating their segregation in the micellar corona. Self-consistent field calculations support the conclusion that these C3Ms are likely to resemble a ‘patched micelle’; that is, micelles featuring a ‘spheres-on-sphere’ morphology.  相似文献   

17.
刘志勇 《高分子科学》2017,35(8):924-938
Well-defined p H-responsive poly(ε-caprolactone)-graft-β-cyclodextrin-graft-poly(2-(dimethylamino)ethylmethacrylate)-co-poly(ethylene glycol) methacrylate amphiphilic copolymers(PCL-g-β-CD-g-P(DMAEMA-co-PEGMA)) were synthesized using a combination of atom transfer radical polymerization(ATRP),ring opening polymerization(ROP) and "click" chemistry.Successful synthesis of polymers was confirmed by Fourier transform infrared spectroscopy(FTIR),proton nuclear magnetic resonance(1H-NMR),and gel permeation chromatography(GPC).Then,the polymers could selfassemble into micelles in aqueous solution,which was demonstrated by dynamic light scattering(DLS) and transmission electron microscopy(TEM).The p H-responsive self-assembly behavior of these copolymers in water was investigated at different p H values of 7.4 and 5.0 for controlled doxorubicin(DOX) release,and these results revealed that the release rate of DOX could be effectively controlled by altering the p H,and the release of drug loading efficiency(DLE) was up to 88%(W/W).CCK-8 assays showed that the copolymers had low toxicity and possessed good biodegradability and biocompatibility,whereas the DOX-loaded micelles remained with high cytotoxicity for He La cells.Moreover,confocal laser scanning microscopy(CLSM) images revealed that polymeric micelles could actively target the tumor site and the efficient intracellular DOX release from polymeric micelles toward the tumor cells further confirmed the anti-tumor effect.The DOX-loaded micelles could easily enter the cells and produce the desired pharmacological action and minimize the side effect of free DOX.These results successfully indicated that p H-responsive polymeric micelles could be potential hydrophobic drug delivery carriers for cancer targeting therapy with sustained release.  相似文献   

18.
The inverse star block copolymer, (poly(ε‐caprolactone)‐b‐polystyrene)2core‐(poly(ε‐caprolactone)‐b‐polystyrene)2, [(PCL‐PS)2core‐(PCL‐PS)2] has been successfully prepared by combination of atom transfer radical polymerization (ATRP), ring opening polymerization (ROP), and “Click Chemistry.” The synthesis includes the following five steps: (1) synthesis of a heterofunctional initiator with two ATRP initiating groups and two hydroxyl groups; (2) formation of (Br‐PS)2core‐(OH)2 via ATRP of styrene; (3) preparation of the (PCL‐PS)2core‐(OH)2 through “click” reaction of the α‐propargyl, ω‐acetyl terminated PCL with (N3‐PS)2core‐(OH)2 which was prepared by transformation of the terminal bromine groups in (Br‐PS)2core‐(OH)2 into azide groups; (4) the ROP of CL using (PCL‐PS)2core‐(OH)2 as macroinitiator to form (PCL‐PS)2core‐(PCL‐OH)2; and (5) preparation of the (PCL‐PS)2core‐(PCL‐PS)2 through the ATRP of styrene using (PCL‐PS)2core‐(PCL‐Br)2 as macroinitiator which was prepared by reaction of the terminal hydroxyl groups at the end of the PCL chains with 2‐bromoisobutyryl bromide. The characterization data support structures of the inverse star block copolymer and the intermediates. The differential scanning calorimeter results and polarized optical microscope observation showed that the intricate structure of the inverse star block copolymer greatly restricted the movement of the PS segments and PCL segments, resulted in the increase of the glass transition temperature of PS segments and the decrease of crystallization ability of PCL segments. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7757–7772, 2008  相似文献   

19.
Well‐defined amphiphilic PCL‐b‐(PDMA)2 and (PCL)2b‐PDMA Y‐shaped miktoarm star copolymers and PCL‐b‐PDMA linear diblock copolymer were synthesized via a combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), where PCL is poly (ε‐caprolactone) and PDMA is poly(2‐(dimethylamino)ethyl methacrylate). All of these three types of copolymers have comparable PCL contents and overall molecular weights. The PCL block is hydrophobic while the PDMA block is hydrophilic, and they behave like polymeric surfactants and self‐assemble into PCL‐core micelles in aqueous media. The chain architectural effects on the micellization properties, including the aggregation number, size, polydispersity, and micelle densities of (PCL29)2b‐PDMA45, PCL61b‐(PDMA24)2, and PCL56b‐PDMA49 in dilute aqueous solution, were then explored by dynamic and static laser light scattering (LLS). The intensity–average hydrodynamic radius, 〈Rh〉, the aggregation number per micelle, Nagg, and the core radius, Rcore, of the PCL‐core micelles all increased in the order PCL61b‐(PDMA24)2 < (PCL29)2b‐PDMA45 < PCL56b‐PDMA49. The surface area occupied per soluble PDMA block at the core/corona interface increased in the order PCL61b‐(PDMA24)2 < PCL56b‐PDMA49 < (PCL29)2b‐PDMA45. PCL61b‐(PDMA24)2 micelles had the largest overall micelle density, possibly because of that the presence of two soluble PDMA arms at the junction point favors the bending of the core–corona interface and thus the formation of densely‐packed core‐shell nanostructures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1446–1462, 2007  相似文献   

20.
Block copolymers consisting of poly(solketal acrylate) and poly(l-lactide) were synthesized by combination of atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) technique. Block copolymerization has been done by two different pathways, simultaneously and sequentially by using a dual functional initiator. Well defined block copolymers were obtained by sequential block copolymerization first implementing ROP of l-lactide followed by ATRP of solketal acrylate. After hydrolysis of the solketal acrylate segments hydrophilic poly(2,3-dihydroxypropyl acrylate) blocks were obtained. The amphiphilic block copolymers were able to self-organize in aqueous solution. Aggregation behavior was studied by means of dynamic and static light scattering. Time dependent enzymatic and hydrolytic degradation of the poly(l-lactide) cores was detected by dynamic light scattering. If enzymatic solutions were used the degradation process proceeded faster and was completed within 4000 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号