首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用原位聚合法合成制备了以蜜胺树脂(MF)、环氧树脂(EP)以及EP和MF为囊材的微胶囊阻燃剂MFAPP、EPAPP、EMFAPP,用红外光谱(FT-IR)和扫描电镜(SEM)表征微胶囊阻燃剂的核壳结构。采用极限氧指数(LOI)和垂直燃烧等级测试(UL94)对MFAPP、EPAPP、EMFAPP在环氧树脂中的阻燃特性进行了研究。当添加量大于7%时,阻燃复合材料均能通过UL 94 V-0级测试,极限氧指数大于27.0%,表明MFAPP、EPAPP、EMFAPP均为EP的高效阻燃剂,这些阻燃剂在EP阻燃过程中均形成了膨胀炭层,属于膨胀阻燃机理。另外在耐水性实验中发现,添加EPAPP、EMFAPP的EP复合材料具有更好的耐水性,经75℃水浸泡6天后,阻燃性能得到了较好的保持。  相似文献   

2.
A novel cheap macromolecular intumescent flame retardants (MIFR) was synthesized, and its structure was a macromolecule containing phosphorus characterized by IR. Rigid polyurethane foam (PUF) filled with MIFR as fire retardant additive was prepared. The effects of MIFR on properties such as density, compressive strength, flame-retardant behavior, thermal stability, and morphology of char were studied. The compressive strength of the MIFR-filled PUF increased initially and then decreased with further increase of MIFR content while its density straightly increased. Its flammability and burning behavior were characterized by UL 94 and limiting oxygen index (LOI). Twenty five percent of MIFR was doped into PUF to get 24.5 of LOI and UL 94 V-0. Activation energy for the decomposition of samples was obtained using Kissinger equation. The resultant data show that for PUF containing MIFR, compared with PUF, the mass loss, thermal stability, and the decomposition activation energy decreased, the char yield increased, which shows that MIFR can catalyze decomposition and carbonization of PUF to form an effective charring layer to protect the underlying substrate.  相似文献   

3.
Melamine polyphosphate (MPP) and halloysite nanotubes (HNT) were introduced to polyamide 6 (PA6) by melt blending in order to improve the fire resistance. PA6 composite containing 12% flame retardants with good spinnability was obtained. The flammability of PA6 composite was characterized by limiting oxygen index (LOI), UL‐94 vertical burning and cone calorimeter (CONE) tests. The results indicated that the LOI value could reach 24.0 vol.% and UL‐94 rating could achieve V2 level at the presence of 12% flame retardants. CONE data demonstrated that peak heat release rate was significantly reduced from 554 kW/m2 of neat PA6 to 368 kW/m2 of the sample containing flame retardants. Thermal analysis indicated that the thermal stability and char formation were improved by the presence of flame retardants. The morphology of residue char was characterized by scanning electron microscopy; and it suggested that a network‐structured protective char layer had been formed. The possible synergism between MPP/HNT and their flame retardant mechanism was also analyzed and discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Polyoxymethylene (POM), having the lowest limiting oxygen index (LOI) (only ∼ 15%), is well known as the most difficult to be flame retarded plastic among all the polymers. In this paper, a novel synergistic flame retardant system composed of aluminium hydroxide (ATH), melamine (ME) and novolac resin was designed and successfully applied to flame retard POM. ATH took effects through heat absorption and water release. Both ME and novolac could react with the decomposition product of POM, formaldehyde, thus improving the flame retardancy. Particularly, novolac resin and ME played the roles of macromolecular charring agent and gas source, enhancing the flame retarding actions in the condensed and gaseous phases, respectively. This ternary synergistic system exhibited fine flame retardancy for POM (UL94 V-1 rating for 1.6 mm bar), and the obtained flame retardant POM also showed good processability and mechanical properties due to the lubrication, compatibilization and aid-dispersion effects of novolac resin.  相似文献   

5.
The effects of β‐cyclodextrin containing silicone oligomer(CDS), as a synergistic agent, on the flame retardancy and mechanical properties of intumescent flame retardant polypropylene composites were studied by adding different amounts of CDS in intumescent flame retardants. The limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were utilized to evaluate the synergistic effects of CDS in the composites. It was found that after a little amount of CDS partially replaced a charring‐foaming agent (CFA) in IFR, LOI values of the composites were enhanced and they obtained a UL‐94 V‐0 rating. IFR system containing 6.25wt% CDS presented the best flame retardancy in PP. The experimental results obtained from LOI and UL‐94, TGA, SEM, and mechanical properties indicated that the combination of CDS and CFA presents synergistic effects in flame retardancy, char formation, and mechanical properties of the composites. This is probably due to different structures of polyhydroxyl macromolecules (CDS and CFA), the existence of dimethyl silicone group in CDS, and the toughness of epoxy silicon chain in CDS. SEM results proved that the interfacial compatibility between IFR and PP was improved by CDS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The natural basalt fiber (BF) was incorporated into EVA composites with environmental‐friendly nickel alginate‐brucite based flame retardant (NiFR), to further improve the flame‐retardant effect and mechanical properties. The flame retardancy of EVA composites were characterized by LOI, UL 94, and cone test. With 55 wt% loading, 3BF/52NiFR had the highest LOI value of 31.9 vol.% in all fiber reinforced composites and pass UL 94V‐0 ratting. And comparing to 55B composite with untreated brucite, 3BF/52NiFR decreased peak of heat release rate by 47.8%, total heat release by 21.9%, and total smoke production by 35.5% and kept more residue 54.0% during cone test. Moreover, 3BF/52NiFR also enhanced the mechanical properties of composites by better compatibility with EVA matrix. BF/NiFR exert synergistic flame‐retardant effect major in promoting charring effect in condensed phase during combustion. The fire‐resisted and rigid BF into the char layer reinforced the intensity of protective barrier which prolonged the residence time of pyrolysis carbonaceous groups degraded from EVA matrix, resulting in less heat and smoke release.  相似文献   

7.
The fire retardant efficiency of melamine (MA) and triphenyl phosphate (TPP) in poly(butylene terephthalate) (PBT) was studied by the limiting oxygen index (LOI) and the UL94 test. On adding 10 wt. % MA and 20 wt. % TPP, LOI increased from 20.9 to 26.6 and the UL94 V-0 rating was achieved. SEM and DSC analyses show that the fire retardants are compatible with PBT and facilitate crystallization of PBT. The occurrence of an interaction between MA + TPP and PBT was elucidated by TGA, dynamic FTIR, and pyrolysis/GC/MS. MA + TPP changes the degradation path of PBT and modifies the compositions of the gas and condensed-phase products.  相似文献   

8.
一种无卤阻燃ABS体系的阻燃性能研究   总被引:3,自引:0,他引:3  
ABS是本世纪40年代发展起来的通用型热塑性材料[1],它有良好的力学性能,耐化学腐蚀、易加工等优点[2-6].  相似文献   

9.
Low flame retardant efficiency is a key bottleneck for currently available retardants against the flammable polypropylene (PP). Herein, the organically modified montmorillonite (OMMT) was utilized as a synergist for our previously reported intumescent flame retardant (IFR) that was constructed from ammonium polyphosphate (APP) and hyperbranched charring foaming agent (HCFA) to further enhance the retardant efficiency against PP. The resultant's combustion behavior was thoroughly investigated by cone calorimetry, limiting oxygen index (LOI), vertical burning test (UL‐94), and scanning electron microscopy (SEM). The results showed that 20% addition of IFR with OMMT showed a positive effect and improved the flame retardancy of the PP systems. Especially, addition of 2 wt% OMMT obviously increased the LOI values of PP systems with 20% total loading flame retardants from 29% to 31.5% and the samples meet V‐0 rating as well as the reduction of the heat release rate (HRR), total heat release (THR), CO2, and CO production occurred. On the other hand, the SEM images were also revealed that OMMT initiated a dense and strong char on the surface of the material, which resulted in efficient flame retardancy of PP matrix during combustion. In addition, thermal degradation behavior discussed by thermogravimetric analysis (TGA) indicated that OMMT could improve the thermal stability of PP systems under high temperature, and promoted char residues of PP/IFR systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The flame retardancy of styrene-b-ethylene/butylene-b-styrene triblock polymer (SEBS)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) blends was greatly improved by the combined use of mica and resorcinol bis(diphenyl phosphate) (RDP). The limiting oxygen index (LOI), vertical burning and cone calorimeter test were performed to evaluate the flame-retarded effect. The composite of SEBS/PPO/maleic anhydride grafted SEBS (SEBS-g-MAH) with a mass ratio of 11/11/3 passed a V-0 rating in the UL94 test by the addition of 10–15 wt% mica and 15–10 wt% RDP with total amount of 25 wt%. The synergism was confirmed by the mathematical evaluation of the synergistic effect index (SE) in LOI, the residue, the peak heat release rate (PHRR) and the total heat evolved (THE) per mass loss (THE/ML). The flame-retarded mechanism of the composite was also proposed on the results of cone calorimeter test, TGA-FTIR, SEM micrographs and SEM/EDS analysis of the residues. It was found that the degradation rate of SEBS/PPO/SEBS-g-MAH matrix was slowed down, a more consolidated char layer with higher residue was promoted by the combination of RDP and mica. The flame-retardancy of RDP with mica in SEBS/PPO/SEBS-g-MAH matrix was synergistic through gas and condensed phase action.  相似文献   

11.
A novel inorganic and organic composite flame retardant (9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide [DOPO]–layered double hydroxide [LDH]) was synthesized via grafting DOPO with organic‐modified Mg/Al‐LDH, which was introduced into poly (methyl methacrylate) (PMMA) resin to prepare the flame‐retardant PMMA composites. Thermogravimetric analyzer (TGA) showed that the T‐50% of DOPO‐LDH/PMMA composites enhanced by about 20°C, and with the 20% flame retardant, the residual char content can be increased by 39.8% in the air atmosphere compared with LDH/PMMA composites. In the UL‐94 and the limiting oxygen index (LOI) tests, it can be found that compared with LDH/PMMA composites, the LOI value of DOPO‐LDH/PMMA composites were raised evidently with the increased flame retardants, and the droplet combustion was greatly improved. These results could be ascribed to the action of DOPO free‐radical, catalytic charring of polymer and the effect of LDH physical barrier. Moreover, the novel DOPO‐LDH not only given PMMA a good flame‐retardant property and thermal stability, but also have higher visible light transmittance, ultraviolet‐shielding effect, and low loss of mechanical properties, which could further facilitate the wide application of inorganic environment‐friendly flame retardants in general resins and engineering resins and broaden the application of polymers.  相似文献   

12.
In order to solve the “candlewick effect” caused by glass fibers, which results in the decrease of flame retardancy of flame-retardant long-glass-fiber-reinforced polypropylene (LGFPP) systems, and the deterioration of mechanical properties caused by adding an additional amount of flame retardants compared with flame-retardant non-glass-fiber-reinforced polypropylene systems so as to keep a same flame retardancy, a novel intumescent flame retardant (IFR) system, which is composed of a charring agent (CA), ammonium polyphosphate (APP) and organically-modified montmorillonite (OMMT), was used to flame retard LGFPP. The thermal stability, combustion behavior, char formation, flame retardant mechanism and mechanical properties of the IFR-LGFPP samples were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 test, cone calorimeter test, scanning electronic microscopy, and mechanical property tests. When the content of IFR is 20 wt%, the LOI value of IFR-LGFPP reaches 31.3, and the vertical burning test reaches UL-94 V-0 rating, solving the “candlewick effect” caused by long glass fiber without additional amount of the IFR. All the relevant cone calorimeter parameters also show that IFR-LGFPP has much better flame-retardant behaviors than LGFPP. Furthermore, the mechanical properties of IFR-LGFPP almost remain unchanged in comparison with those of LGFPP containing no IFR. The flame retardant mechanism was also discussed.  相似文献   

13.
Pentaerythritol diphosphonate melamine-urea-formaldehyde resin salt, a novel cheap macromolecular intumescent flame retardants (IFR), was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus characterized by IR. Epoxy resins (EP) were modified with IFR to get the flame retardant EP, whose flammability and burning behavior were characterized by UL 94 and limiting oxygen index (LOI). 25 mass% of IFR were doped into EP to get 27.2 of LOI and UL 94 V-0. The thermal properties of epoxy resins containing IFR were investigated with thermogravimetry (TG) and differential thermogravimetry (DTG). Activation energy for the decomposition of samples was obtained using Kissinger equation. The resultant data show that for EP containing IFR, compared with EP, IFR decreased mass loss, thermal stability and R max, increased the char yield. The activation energy for the decomposition of EP is 230.4 kJ mol−1 while it becomes 193.8 kJ mol−1 for EP containing IFR, decreased by 36.6 kJ mol−1, which shows that IFR can catalyze decomposition and carbonization of EP.  相似文献   

14.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、五硫化二磷(P2S5)为原料合成9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS),并将DOPS与聚磷酸铵(APP)组成复合阻燃剂,用于环氧树脂(EP)的阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法对改性后的环氧树脂的阻燃性能和阻燃机理进行了测试和分析.实验结果表明,DOPS/APP阻燃体系对EP具有很好的阻燃性能,且复配阻燃剂的阻燃效果比单一的阻燃剂阻燃效果好;其中,当阻燃剂的总添加量达到30%时即W_(DOPS)=10%、W_(APP)=20%时,阻燃EP复合材料的LOI值可达到29.2%,垂直燃烧等级达到UL-94 V-0级,残炭量可达49.3%.  相似文献   

15.
Epoxy/glass fiber hybrid composites with organo-montmorillonite (OMMT) and decabromodiphenyl oxide (DBDPO) flame retardants were prepared by vacuum-assisted resin infusion technique. The effects of OMMT and DBDPO on the flammability properties of epoxy/glass fiber hybrid composites were evaluated through UL-94 vertical flammability test and limiting oxygen index (LOI). Thermal decomposition was studied by means of thermogravimetric analyzer (TG). Field emission scanning electron microscopy (FESEM) was used to study the char morphology of the epoxy hybrid composites after being subjected to UL-94 vertical flammability test. Epoxy/glass fiber/OMMT hybrid composites with DBDPO loading of 40 wt% showed V-1 rating, whereas an increase to 50 wt% loading showed V-0 rating. The LOI values increased from 22.7 to 39.9 % as the loading of DBDPO increased. The obtained TG results showed that the thermal stability of epoxy hybrid composites decreased as the DBDPO loading increased. DBDPO decomposed at a lower temperature to form bromine radicals, which reacted with the combustible gases to form hydrogen bromide to inhibit the flame spread in the gas phase. The condensed phase activity was shown in FESEM, in which a layer of compact and continuous char was formed in epoxy/glass fiber/OMMT/DBDPO hybrid composites.  相似文献   

16.
The organo-montmorillonite (MT), combined with a DOPO-based oligomer (PDAP), was used to improve the flame retardancy of epoxy thermoset. The thermal stabilities and flame-retardant properties of thermosets were investigated by thermogravimetric analysis, limiting oxygen index (LOI) and UL-94 tests. The synergistic effect of MT and PDAP was studied by Py–GC/MS, Fourier transform infrared spectroscopy, elemental analysis, laser Raman spectroscopy and scanning electron microscope. Results revealed that 0.5 mass% MT combined with 4 mass% PDAP showed obvious synergistic effect on enhancing the flame retardancy of thermoset. The corresponding thermoset achieved an LOI value of 35.5% and V-0 rating in UL-94 test, which was attributed to the intense blowing-out effect during combustion. The synergistic mechanism was probably ascribed to the formation of silicoaluminophosphate (SAPO) originating from the reaction between MT and PDAP. The SAPO serving as a solid acidic catalyst, coupled with the acid sites from the decomposition of organomodifier in MT, could promote the charring process. With the further increase in MT content, the charring process was strongly promoted and more phosphorus element was retained in the condensed phase, which inevitably resulted in the remarkable decrease of the amount of pyrolytic gases containing phosphorus-based radicals and nonflammable gases. These factors were responsible for the diminished blowing-out effect during combustion, which was adverse to the further improvement of flame retardancy.  相似文献   

17.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Intumescent flame retardant (IFR) has received the considerable attention ascribed to the inherent advantages including non‐halogen, low toxicity, low smoke release and environmentally friendly. In this work, a novel charring agent poly (piperazine phenylaminophosphamide) named as PPTA was successfully synthesized and characterized by Fourier transform infrared spectra (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then, a series of flame‐retardant EP samples were prepared by blending with ammonium polyphosphate (APP) and PPTA. Combustion tests include oxygen Index (LOI), vertical Burning Test (UL‐94) and cone calorimeter testing,these test results showed that PPTA greatly enhances the flame retardancy of EP/APP. According to detailed results, EP containing 10 wt% APP had a LOI value of 30.2%,but had no enhancement on UL‐94 rating. However, after both 7.5 wt% APP and 2.5 wt% PPTA were added, EP‐7 passed UL‐94 V‐0 rating with a LOI value of 33.0%. Moreover, the peak heat release rate (PHRR) and peak of smoke product rate (PSPR) of EP‐7 were greatly decreased. Meanwhile, the flame‐retardant mechanism of EP‐7 was investigated by scanning electron microscopy (SEM), thermogravimetric analysis/infrared spectrometry (TG‐IR) and X‐ray photoelectron spectroscopy (XPS). The corresponding results presented PPTA significantly increased the density of char layer, resulting in the good flame retardancy.  相似文献   

19.
The flame retardancy of bisphenol A polycarbonate (PC) containing potassium diphenylsulfone sulfonate (KSS), poly(aminopropyl/phenylsilsesquioxane) (PAPSQ) and poly(vinylidenefluoride) (PVDF) was measured by limited oxygen index (LOI) and examined according to UL94. A high LOI and UL94 V-0 rating for 1.6 mm thickness samples were obtained by a combined use of equivalent KSS, PAPSQ and PVDF at 0.1-0.3 wt% loading, respectively. The improvement in flame retardancy of PC compositions arose from the synergistic interaction of three additives. Thermogravimetric analysis (TGA) indicated that the combination decreased the activation energy (E) of PC degradation and elevated the thermal degradation rate of PC to ensure the formation of an insulating carbon layer. FTIR analysis showed that the LOI char of PC containing the three additives took on a highly cross-linking aromatic ester and ether structure.  相似文献   

20.
New flame retardant system for poly(oxymethylene) (POM) has been studied. The combination of red phosphorus with novolac and melamine was found to act as an effective flame retardant of POM. The base POM exhibited very low limiting oxygen index (LOI) value of 15.3, while the flame retarded POM gave remarkably high LOI value of 37.5 and UL94 V-1 ranking without dripping at 0.8 mm thickness. The results of cone calorimetry, thermogravimetry and FTIR analysis suggested that the flame retarding mechanism is the intumescent char formation in the condensed phase. Novolac having a phenolic hydroxyl group is miscible with POM, and in the flaming process, red phosphorus yields phosphine and its acidic product such as phosphoric acid due to hydrolysis and oxidation reactions. In addition, all of novolac, melamine and phosphine are able to readily react with formaldehyde generated from POM during burning to give the reinforced and cross-linked char network through the polyaddition and polycondensation reactions. Therefore, the red phosphorus/novolac/melamine ternary combination system could synergistically promote the high flame retardancy of POM without the flaming drips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号