首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solvent effect on the polymerization of di-n-butyl itaconate (DBI) with dimethyl azobisisobutyrate (MAIB) was investigated at 50 and 61°C. The solvents used were found to affect significantly the polymerization. The polymerization rate (Rp) and the molecular weight of the resulting polymer are lower in more polar solvents. The initiation rate (Ri) by MAIB, however, shows a trend of being rather higher in polar solvents. The stationary state concentration of propagating poly(DBI) radical was determined by ESR in seven solvents. The rate constants of propagation (kp) and termination (kt) were evaluated by using Rp, Ri, and the polymer radical concentration observed. The kp value decreases fairly with increasing polarity of the solvent used, whereas kt is not so influenced by the solvents. The solvent effect on kp is explained in terms of a difference in the environment around the terminal radical center of the growing chain. Copolymerization of DBI with styrene (St) was also examined in three solvents with different physical properties. The poly(DBI) radical shows a lower reactivity toward St in a more polar solvent.  相似文献   

2.
The polymerization of di-n-butyl itaconate (DBI) intiated with AIBN was kinetically investigated in benezene. The polymerization rate (Rp) was expressed by: Rp = k[AIBN]0.5[DBI]1.7. The polymerization showed a considerably low overall activation energy of 15.3 kcal/mol. The initiator efficiency of AIBN in this system decreased with increasing DBI concentration, ranging from 0.34 to 0.55°C, which is ascribable to viscosity effect due to the monomer. From an ESR study, the polymerization system was found to involve two kinds of persistent radicals, namely, primary propagating ( III ) and propagating ( I ) radicals. The relative concentration of III to I increased with decreasing monomer concentration. Azo-nitrile initiators such as AVN and ACN similarly produced two persistent radicals, while MAIB, DBPO, and PBO yielded only propagating radical I as persistent. The MAIB-initiated polymerization of DBI was also performed in benzene. Similar kinetic features were observed, that is, a higher dependence of Rp on the DBI concentration and a low overall activation energy (14.4 kcal/mol). The following rate equation was obtained at 50°C:Rp = k[MAIB]0.5[DBI]1.6. The initiator efficiency of MAIB decreased with increasing DBI concentration, ranging from 0.32 to 0.53 at 50°C. The concentration of propagating radical I was determined by ESR at 50 and 61°C, from which kp and kt were estimated. The kp value increased with increasing monomer concentration, while the kt one decreased with the DBI concentration. These values are much lower compared with those of MMA.  相似文献   

3.
Abstract: Catalysis of GTP of MMA with nucleophilic anions on cross-linked polystyrene supports was studied. With anion-bound supported catalyst, evidence is presented for formation in solution of ester enolates as reaction intermediates. Study of the cyanide-catalyzed initiation of GTP of MMA by TMSCN, has provided quantitative data for the association constant Ka for the complexation of cyanide by TMSCN and, by inference, an upper limit for the Ka for the association of this nucleophilic anion with silyl ketene acetals. The effects of i-propyl- and t-butoxy-silyl analogs of TMSCN on anion-complexation and on initiation and propagation of GTP are discussed. Coordination by hydrogen-bonding of nucleophilic anions to acetonitrile is shown to be the mechanism for “livingness-enhancement” of anion-catalyzed GTP at low concentrations of acetonitrile. GTP was used to prepare an ABC triblock dispersant, poly(methacrylic acid)-block-poly(2-phenylethyl methacrylate)-block-poly(ethoxytriethylene glycol methacrylate), and the surface activity of an aqueous solution of the potassum salt was compared with that of other polymer architectures.  相似文献   

4.
6‐Bromoindigo (MBI) [systematic name: 6‐bromo‐2‐(3‐oxo‐2,3‐dihydro‐1H‐indol‐2‐ylidene)‐2,3‐dihydro‐1H‐indol‐3‐one], C16H9BrN2O2, crystallizes with one disordered molecule in the asymmetric unit about a pseudo‐inversion center, as shown by the Br‐atom disorder of 0.682 (3):0.318 (3). The 18 indigo ring atoms occupy two sites which are displaced by 0.34 Å from each other as a result of this packing disorder. This difference in occupancy factors results in each atom in the reported model used to represent the two disordered sites being 0.08 Å from the higher‐occupancy site and 0.26 Å from the lower‐occupancy site. Thus, as a result of the disorder, the C—Br bond lengths in the disordered components are 0.08 and 0.26 Å shorter than those found in 6,6′‐dibromoindigo (DBI) [Süsse & Krampe (1979). Naturwissenschaften, 66 , 110], although the distances within the indigo ring are similar to those found in DBI. The crystals are also twinned by merohedry. Stacking interactions and hydrogen bonds are similar to those found in the structures of indigo and DBI. In MBI, an interaction of the type C—Br...C replaces the C—Br...Br interactions found in DBI. The interactions in MBI were calculated quantum mechanically using density functional theory and the quantum theory of atoms in molecules.  相似文献   

5.
Sulfonyldiazene-N-oxides2 and3 were obtained by treatment of sulfamide with nitroso compounds1 in the presence of 1,3-dibromoisocyanurate (DBI) in neutral and acid media.Translated fromIzyestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 681–683, April, 1994.  相似文献   

6.
We have reported that intramolecular chain‐transfer reaction takes place in radical polymerization of itaconates at high temperatures and/or at low monomer concentrations. In this article, radical polymerizations of di‐n‐butyl itaconate (DBI) were carried out in toluene at 60 °C in the presence of amide compounds. The 13C‐NMR spectra of the obtained poly(DBI)s indicated that the intramolecular chain‐transfer reaction was suppressed as compared with in the absence of amide compounds. The NMR analysis of DBI and N‐ethylacetamide demonstrated both 1:1 complex and 1:2 complex were formed at 60 °C through a hydrogen‐bonding interaction. The ESR analysis of radical polymerization of diisopropyl itaconate (DiPI) was conducted in addition to the NMR analysis of the obtained poly(DiPI). It was suggested that the suppression of the intramolecular chain‐transfer reaction with the hydrogen‐bonding interaction was achieved by controlling the conformation of the side chain at the penultimate monomeric unit of the propagating radical with an isotactic stereosequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4895–4905, 2004  相似文献   

7.
The sterically hindered, 1,1‐disubstituted monomers di‐n‐butyl itaconate (DBI), dicyclohexyl itaconate (DCHI), and dimethyl itaconate (DMI) were polymerized with reversible addition–fragmentation chain transfer (RAFT) free‐radical polymerization and atom transfer radical polymerization (ATRP). Cumyl dithiobenzoate, cumyl phenyl dithioacetate, 2‐cyanoprop‐2‐yl dithiobenzoate, 4‐cyanopentanoic acid dithiobenzoate, and S‐methoxycarbonylphenylmethyl dithiobenzoate were employed as RAFT agents to mediate a series of polymerizations at 60 °C yielding polymers ranging in their number‐average molecular weight from 4500 to 60,000 g mol?1. The RAFT polymerizations of these hindered monomers displayed hybrid living behavior (between conventional and living free‐radical polymerization) of various degrees depending on the molecular structure of the initial RAFT agent. In addition, DCHI was polymerized via ATRP with a CuCl/methyl benzoate/N,N,N′,N″,N″‐pentamethyldiethylenetriamine/cyclohexanone system at 60 °C. Both the ATRP and RAFT polymerization of the hindered monomers displayed living characteristics; however, broader than expected molecular weight distributions were observed for the RAFT systems (polydispersity index = 1.15–3.35). To assess the cause of this broadness, chain‐transfer‐to‐monomer constants for DMI, DBI, and DCHI were determined (1.4 × 10?3, 1.3 × 10?3, and 1.0 × 10?3, respectively) at 60 °C. Simulations carried out with the PREDICI program package suggested that chain transfer to monomer contributed to the broadening process. In addition, the experimental results indicated that viscosity had a pronounced effect on the broadness of the molecular weight distributions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3692–3710, 2006  相似文献   

8.
Reaction of 1,4‐di‐(3‐aminofurazan‐4‐oyl)piperazine 4 with dibromoisocyanurate (DBI) affords azofurazan‐annulated macrocyclic lactam 7 ; the X‐ray structure of the macrocycle 7 is reported. The synthesis was started with 3‐aminofurazan‐4‐carboxylic acid 1 . A one‐pot method for preparation of the amino acid was elaborated from commercially available cyanoacetic ester. Amides of the acid have been prepared via the esterification and subsequent animation.  相似文献   

9.
The success of in vivo solid phase microextraction (SPME) depends significantly on the selection of calibration method. Three kinetic in vivo SPME calibration methods are evaluated in this paper: (1) on-fibre standardization (OFS), (2) dominant pre-equilibrium desorption (DPED), and (3) the diffusion-based interface (DBI) model. These are compared in terms of precision, accuracy, and ease of experimental use by employing a flow device simulating an animal circulatory system. In addition, the kinetic calibration methods were validated against established SPME equilibrium extraction (EE) external calibration and a conventional sample preparation method involving protein precipitation. The comparison was performed using a hydrophilic drug fenoterol as the analyte of interest. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for the determinations. All three kinetic methods compared well with both EE extraction and the conventional method in terms of accuracy (93-119%). In terms of precision, the DBI model had the best precision in whole blood and buffered phosphate saline solution with %RSD similar to the standard techniques (9-15%). DPED had the poorest precision of %RSD (20-30%) possibly due to errors associated with uncertainty in the amount of standard loaded on-fibre and remaining on the fibre after desorption. In addition, incurred errors could result due to the greater number of fibres used in comparison to the other two calibration methods. The precision of the OFS procedure was better than for DPED primarily because the use of multiple fibres is eliminated. In terms of the ease of use for calibration, the DBI model was the simplest and most convenient as it did not require standards once it had been calibrated or the uptake constant was calculated. This research suggests the potential use of DBI model as the best kinetic calibration method for future in-vein blood SPME investigations.  相似文献   

10.
为提高具抗凝血性能的阿魏酸分子在水中的溶解性进而提高其药效,利用DBI(3,4-二羟基苯甲醛)、PEG(聚乙二醇4000)和纳米Fe3O4,采用接枝的方法制备了水溶性纳米Fe3O4-DBI-PEG-阿魏酸抗凝血杂化材料,用IR、1H NMR、TG、SEM、TEM、VSM和粒度测试方法表征了产物。结果表明阿魏酸(FA)接枝在了经过DBI-PEG活化后的纳米Fe3O4氧化物表面。杂化材料具有良好的水溶性(溶解度大于10 mg·mL-1)和顺磁性。抗凝血试验表明相同条件下杂化材料的抗凝血时间和复钙时间比阿魏酸要长,杂化材料的活化部分凝血活酶时间(APTT)和凝血酶原时间(PT)比空白组要长,杂化材料的抗凝血时间随浓度的增大而延长。  相似文献   

11.
为提高具抗凝血性能的阿魏酸分子在水中的溶解性进而提高其药效,利用DBI(3,4-二羟基苯甲醛)、PEG(聚乙二醇4000)和纳米Fe3O4,采用接枝的方法制备了水溶性纳米Fe3O4-DBI-PEG-阿魏酸抗凝血杂化材料,用IR、1H NMR、TG、SEM、TEM、VSM和粒度测试方法表征了产物。结果表明阿魏酸(FA)接枝在了经过DBI-PEG活化后的纳米Fe3O4氧化物表面。杂化材料具有良好的水溶性(溶解度大于10 mg·mL-1)和顺磁性。抗凝血试验表明相同条件下杂化材料的抗凝血时间和复钙时间比阿魏酸要长,杂化材料的活化部分凝血活酶时间(APTT)和凝血酶原时间(PT)比空白组要长,杂化材料的抗凝血时间随浓度的增大而延长。  相似文献   

12.
Diethyl vinylphosphonate does not undergo group transfer polymerization (GTP), but does react with the silyl ketene acetal end group of PMMA prepared by GTP to give α-(2-diethoxyphosphinylethyl) PMMA. Copolymerization of MMA and small amounts of diethyl vinylphosphonate led to copolymer. The telechelic PMMA diphosphonic acid, α-(2-dihydroxyphosphinylethyl) ω-dihydroxyphosphinylPMMA, was synthesized by initiation of GTP of MMA with diethyl 3-methoxy-3-trimethylsiloxy-2-propene-1-phosphonate, followed by termination with diethyl vinylphosphonate, silylation of the phosphonic ester with bromotrimethylsilane, and hydrolysis. Reaction of living poly (methyl methacrylateco-n-butyl methacrylate), prepared by GTP, with bis (trimethylsilyl) vinylphosphonate followed by hydrolysis gave α-(2-dihydroxyphosphinylethyl) poly (methyl methacrylateco-n-butyl methacrylate).  相似文献   

13.
Highly efficient syntheses of poly(alkyl methacrylate)-based brush polymers were accomplished via a facile group transfer polymerization (GTP) and a consecutive grafting-through ring-opening metathesis polymerization. The GTP system, composed of the norbornenyl-methyl trimethylsilyl ketene acetal initiator and the N-(trimethylsilyl) bis(trifluoromethanesulfonyl)imide catalyst, rapidly and quantitatively generates norbornenyl-terminated poly(alkyl methacrylate) macromonomers with very narrow polydispersities (Mw/Mn < 1.10). The ring-opening metathesis polymerization of methacrylate macromonomers using Grubbs third generation catalyst successfully generated a group of methacrylate-based brush polymers, which assured the high quality of the macromonomers obtained from GTP.  相似文献   

14.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

15.
Radical polymerizations of di‐n‐butyl itaconate were investigated. Unexpected resonances (C resonances) were observed in 13C NMR spectra of C?O of poly(di‐n‐butyl itaconate)s [poly(DBI)s] obtained at temperatures higher than 60 °C, although two kinds of carbonyl groups showed splittings due to triad tacticities in the spectra of polymers obtained at lower temperatures. The poly(DBI)s formed by the different kinds of initiators or formed in the presence of chain‐transfer agents showed hardly any changes in the intensities of the C resonances; this indicated that the C resonances were not due to the structures formed through initiating and terminating reactions. The poly(DBI)s obtained at different yields showed only a slight increase in the intensities of the C resonances with the yield, which suggested that the C resonances were not attributable to the intermolecular chain‐transfer reaction to the monomer and/or polymer. However, the intensities of the C resonances significantly increased with a decreasing feed monomer concentration; this suggested that intramolecular chain‐transfer reactions took place at high temperatures. Furthermore, a Cu complex‐catalyzed atom transfer radical polymerization mechanism was revealed to be effective for suppressing the intramolecular chain‐transfer reaction at 60 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2415–2426, 2002  相似文献   

16.
Previous research found Potentilla fruticosa leaf extracts (PFE) combined with green tea polyphenols (GTP) showed obvious synergistic effects based on chemical mechanisms. This study further confirmed the synergy of PFE + GTP viewed from bioactivities using the microbial test system (MTS). The MTS antioxidant activity results showed the combination of PFE + GTP exhibited synergistic effect and the ratio 3:1 showed the strongest synergy, which were in accordance with the results in H2O2 production rate. The combination of PFE + GTP promoted CAT and SOD enzyme activity and their gene expression especially at the ratio 3:1. Therefore, the synergism of PFE + GTP may be due to the promotion of CAT and SOD genes expression which enhanced the CAT and SOD enzyme activities. These results confirmed the synergy of PFE + GTP and could provide theoretical basis to produce a compounded tea made of a mixture of leaves from Potentilla species.  相似文献   

17.
ABC triblock copolymers of methyl methacrylate (MMA), (dimethylamino)-ethyl methacrylate (DMAEMA), and tetrahydropyranyl methacrylate (THPMA) consisting of 12 units of each type of monomer were synthesized by group transfer polymerization (GTP). These were the three topological isomers with differentblock sequences: DMAEMA12-THPMA12-MMA12, DMAEMA12-MMA12-THPMA12, and THPMA12-DMAEMA12-MMA12. The molecular weights and molecular weight distributions of the copolymers were determined by gel permeation chromatography (GPC) in tetrahydrofuran, and their number-average degrees of polymerization and copolymer compositions were calculated by proton nuclear magnetic resonance spectroscopy (1H-NMR). These molecular weights and degrees of polymerization corresponded closely to the values expected from the monomer/initiator ratios. The polydispersities were low as expected for GTP, and ranged from 1.09 to 1.25. The three triblocks were chemically modified by converting the THPMA units to methacrylic acid (MAA) units either by thermolysis or acid hydrolysis. The resulting ABC triblock poly-ampholytes were characterized by 1H-NMR spectroscopy and hydrogen ion titration. Aqueous GPC studies in 1.0M NaCl at pH 8.5 showed that the triblock copolymers form micelles whose size depends on their block sequence. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 617–631, 1998  相似文献   

18.
We study the structures of the Hras‐GTP complex and the Hras‐GDP complex in water to investigate the mechanism of GTP hydrolysis of the Hras‐GTP complex. We performed molecular dynamics simulations of these complexes to investigate the structures of these complexes using the potential parameters of AMBER ff03 and our potential parameters around Mg2+. Our simulations show that the averaged structure differences between the Hras‐GTP complex and Hras‐GDP complex are found in the switch I and II regions. In particular, in the switch II region, the α2 ‐ helix of Hras‐GDP is shorter than the α2 ‐ helix of Hras‐GTP. The averaged number of water molecules in the first hydration sphere in Hras‐GDP complex is larger than that in Hras‐GTP complex. The occurrence ratio of the duration time of waters in the first hydration sphere of PA has long tail both in Hras‐GTP and in Hras‐GDP. In Hras‐GDP complex, β‐phosphate is hard to be hydrolyzed, while the number of waters in the first hydration sphere is larger than those in Hras‐GTP. This suggests that there is a special direction for the hydrolysis. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
A regioselective method for the synthesis of [(-nitroalkyl)-ONN-azoxy]alkyl- and-arylsulfones by oxidative condensation of pseudonitroles with aliphatic and aromatic sulfamides under the action of dibromoisocyanurate (DBI) was proposed. The behavior of the azoxysulfones obtained toward acids and bases as well as futher transformations of the products of acid hydrolysis into salts and halo-derivatives of nitroalkylazoxysulfones were investigated.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1267–1270, July, 1994.  相似文献   

20.
Okadaic acid (OA), a lipophilic toxin, is produced by Dinophysis and Prorocentrum, and causes diarrheic shellfish poisoning to humans. The mechanism of OA action is based on the reversible inhibition of protein phosphatase type 2A (PP2A) by the toxin. Therefore, this inhibition could be used to develop assay for OA detection. In this work, a colorimetric test based on the PP2A inhibition was developed for OA detection. PP2A from GTP and Millipore was immobilized on silica sol-gel, and the detection was performed. A limit of detection of 0.29 and 1.14 μg/L was respectively observed for enzyme from GTP and Millipore. The immobilization technique provided a tool to preserve the enzymatic activity, which is very unstable in solution. The PP2A immobilized sol-gel exhibited a storage stability of near 5 months, when microtiter plate with enzyme-immobilized polymer was kept at −18C°. The combination of the simplicity of the colorimetric method, along with long storage stability achieved by sol-gel immobilization, demonstrated the potentiality of this technique to be used for commercial purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号