首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
PVDF nanocomposites based on functionalized graphene sheets, FGS prepared from graphite oxide, and exfoliated graphite, EG, were prepared by solution processing and compression molding. FGS remains well dispersed in the PVDF composites as evidenced by the lack of the characteristic graphite reflection in the composites. Although the α‐phase of PVDF is seen in the EG‐based composites, a mixture of α‐ and β‐phases is present in the FGS analogs. SEM and TEM imaging show smooth fractured surfaces with oriented platelets of graphite stacks and obvious debonding from the matrix in the EG‐PVDF composites. In contrast, the FGS‐PVDF composites show a wrinkled topography of relatively thin graphene sheets bonded well to the matrix. Storage modulus of the composites was increased with FGS and EG concentration. A lower percolation threshold (2 wt %) was obtained for FGS‐PVDF composites compared to EG‐PVDF composites (above 5 wt %). Lastly, the FGS‐PVDF composites show an unusual resistance/temperature behavior. The resistance decreases with temperature, indicating an NTC behavior, whereas EG‐PVDF composites show a PTC behavior (e.g., the resistance increases with temperature). We attribute the NTC behavior of the FGS based composites to the higher aspect ratio of FGS which leads to contact resistance predominating over tunneling resistance. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 888–897, 2009  相似文献   

2.
采用简单的水热法制备出功能化石墨烯与CoOOH的复合物,再通过低温热处理得到功能化石墨烯-Co3O4复合材料;采用扫描电子显微镜分析了样品的形貌;测定了其电化学性能和氮气吸脱附行为.结果表明,Co3O4粒子很好地负载在石墨烯片层之间和表面;形成的复合物具有纳米孔道结构,这些纳米孔道结构有利于电解液离子的传输;而石墨烯良好的导电性有利于电子传递和提高Co3O4粒子的电容贡献值.与此同时,复合物在充放电电流密度为1A/g时的电容达320F/g,表现出优异的超电容性能.  相似文献   

3.
采用熔融共混法制备了聚环氧乙烷(PEO)/埃洛石纳米管(HNTs)复合材料,重点研究了HNTs含量对PEO/HNTs复合材料的微观结构、热稳定性及燃烧性质的影响。结果表明,在熔融共混条件下,不同含量的表面未经任何处理的HNTs以纳米尺度均匀分散于PEO基体中;随着HNTs含量的增加,复合材料的热稳定性显著增加。氧指数和水平燃烧测试结果均表明随着HNTs含量的增加,复合材料的阻燃能力有较大提高。  相似文献   

4.
Highly flexible nanocomposite films of nanocrystalline cellulose acetate (NCCA) and graphene oxide (GO) were synthesized by combining NCCA and GO sheets in a well-controlled manner. By adjusting the GO content, various NCCA/GO nanocomposites with 0.3–1 wt% GO were obtained. Films of these nanocomposites were prepared using the solvent casting method. Microscopic and X-ray diffraction (XRD) measurements demonstrated that the GO nanosheets were uniformly dispersed in the NCCA matrix. Mechanical properties of the composite films were also studied. The best GO composition of the samples tested was 0.8 wt%, giving tensile strength of 157.49 MPa, which represents a 61.92 % enhancement compared with NCCA. On the other hand, the composite films showed improved barrier properties against water vapor. This simple process for preparation of NCCA/GO films is attractive for potential development of high-performance films for electrical and electrochemical applications.  相似文献   

5.
The key factors in the design of nanocomposites include obtaining a good adhesion between components and homogeneous dispersion of the nanoadditive in the polymer matrix. Direct mixing of graphene with polymers which are then processed by melt compounding method results in strong tendency of nanoadditive to agglomerate. The article presents a new approach to obtaining poly(vinylidene fluoride)/graphene (PVDF/rGO) nanocomposites in the form of fibers. This method is characterized by the use of graphene oxide (GO) dispersed in the plasticizer instead of graphene. The combination of the fibers forming process with simultaneous reduction of GO to rGO allowed the authors to obtain nanocomposites with graphene homogeneously dispersed in the polymer matrix. Moreover, addition of graphene resulted in formation of β-phase in the nanocomposites, which is characteristic for PVDF and responsible for pyroelectric and piezoelectric properties of this polymer.  相似文献   

6.
Poly(ethylene terephthalate) (PET)/multi-layer graphene oxide (mGO) nanocomposites were produced using the melt compounding technique, with the aid of a twin-screw extruder. The main goal was to investigate the effect of different exfoliation media on the morphology of graphene oxide and its effects, mainly on the mechanical performance of PET/mGO based polymer nanocomposites. Two different exfoliation media (water and ethanol) were used for the mGO synthesis. Based on each medium, nanocomposites with three different mGO contents (0.05 wt%, 0.1 wt%, and 0.3 wt%) were produced. When exfoliated in water, mGO sheets present larger lateral dimensions, i.e., higher surface area available to interact with polymer chains. All nanocomposites presented similar crystallinity, but with a slight increase related to the neat PET, indicating the nucleating effect of mGO. A theoretical model was used to predict the nanocomposites elastic modulus, justifying the experimental results. The biggest mechanical improvement was presented by a composite with low content of water-exfoliated mGO (0.1 wt%). The polymer tensile strength, strain at break, and toughness were improved by 19%, 238% and 590%, respectively. A significant reduction in the polymer dissipation factor (tanδ) with mGO content was also verified, indicating some confinement of polymeric chains due to interactions with the mGO sheets. The different surface fracture mechanisms presented by the nanocomposite with 0.1 wt% water-exfoliated mGO were verified, in which a good interface allowed greater release of strain energy. The XR-MT data confirmed that differences in mGO morphology can sensitively affect the final composite properties, characterising it as the driving force for mechanical improvements. Therefore, a melt compounded PET/graphene derivative composite is presented, exhibiting more promising results than what is already reported by solution mixed and in-situ polymerised composites. It was possible due to the strategic processing route utilised, in which the exfoliated mGO was pre-mixed with the polymer powder using the SSD technique.  相似文献   

7.
The effect of the C/O ratio of graphene oxide materials on the reinforcement and rheological percolation of epoxy-based nanocomposites has been studied. As-prepared graphene oxide (GO) and thermally-reduced graphene oxide (TRGO) with higher C/O ratios were incorporated into an epoxy resin matrix at loadings from 0.5 to 5 wt %. Tensile testing revealed good reinforcement of the polymer up to optimal loadings of 1 wt %, whereas agglomeration of the flakes at higher loadings caused the mechanical properties of the composites to deteriorate. The level of reduction (C/O) of the graphene oxide filler was found to influence the mechanical and rheological properties of the epoxy composites. Higher oxygen contents were found to lead to stronger interfaces between graphene and epoxy, giving rise to higher effective Young's moduli of the filler and thus to superior mechanical properties of the composite. The effective modulus of the GO in the nanocomposites was found to be up to 170 GPa. Furthermore, rheological analysis showed that highly oxidized graphene flakes did not raise the viscosity of the epoxy resin significantly, facilitating the processing considerably, of great importance for the development of these functional polymeric materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 281–291  相似文献   

8.
金属氧化物可通过电化学转换反应与锂离子及钠离子发生多电子可逆结构转换,是一类极具应用前景的高容量锂离子和钠离子电池负极材料。实验以氧化石墨烯和铁盐为前驱体,采用简单的溶剂法,成功将Fe2O3纳米单晶粒子均匀负载于石墨烯的导电片层上,获得Fe2O3/rGO(还原氧化石墨烯)纳米复合材料。复合电极在锂离子和钠离子电池中都表现出优异的充放电性能和循环稳定性。实验结果表明石墨烯的包覆不仅能降低Fe2O3发生转换反应的电荷传递阻抗,而且能够稳定电极在循环过程中带来的结构转变,极大改善电极大电流充放能力和循环稳定性。本研究为发展高容量的锂离子和钠离子电池负极材料提供了可行的途径。  相似文献   

9.
Polyaniline nanocomposites containing gold nanoparticles (GNPs) attached to the surface of reduced graphene oxide (RGO) were chemically prepared using β-naphthalene sulfonic acid as a dopant. The synthesized composites were characterized using Fourier transform infrared spectroscopy and UV-vis spectroscopy, and their surface morphology and amended crystallinity were determined by scanning electron microscopy and X-ray diffraction, respectively. Further the elemental analysis was also performed to identify the synthesized polymer composites. Complex impedance measurements were performed on the composite samples in the form of films. Sheets prepared by conventional techniques were used to study the microwave absorption properties in the microwave range of 2–12?GHz, and the effects of sample thickness on the microwave absorption were investigated. Experimental results show that the electrical conductivity of the composites increases with increasing concentrations of added GNP-RGO without a percolation threshold.  相似文献   

10.
Magnetic CoFe2O4-functionalized graphene sheets (CoFe2O4-FGS) nanocomposites have been synthesized by hydrothermal treatment of inorganic salts and thermal exfoliated graphene sheets. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that cobalt ferrite nanoparticles with sizes of 10-40 nm are well dispersed on graphene sheets. OH was recognized as a tie to integrate the inorganic salts with the graphene sheets, which made reaction started and developed on the surface of graphene sheets and formed cobalt ferrite nanoparticles on graphene sheets. The adsorption kinetics investigation revealed that the adsorption of methyl orange from aqueous solution over the as-prepared CoFe2O4-FGS nanocomposites followed pseudo-second-order kinetic model and the adsorption capacity was examined as high as 71.54 mg g−1. The combination of the superior adsorption of FGS and the magnetic properties of CoFe2O4 nanoparticles can be used as a powerful separation tool to deal with water pollution.  相似文献   

11.
The formation and physical properties of epoxy nanocomposites with carbon (nanotubes, graphene, and graphite), metal-containing, and aluminosilicate (montmorillonite and halloysite) fillers are considered. The mutual effect of both a matrix and nanoparticles on the composite structure is discussed. The role of the interfacial layer in the mechanical properties of nanocomposites is revealed. It is found that the concentration dependence of electrical and thermal conductivities of the composites is related to the percolation phenomenon.  相似文献   

12.
We demonstrate the use of functionalized graphene sheets (FGSs) as multifunctional nanofillers to improve mechanical properties, lower gas permeability, and impart electrical conductivity for several distinct elastomers. FGS consists mainly of single sheets of crumbled graphene containing oxygen functional groups and is produced by the thermal exfoliation of oxidized graphite (GO). The present investigation includes composites of FGS and three elastomers: natural rubber (NR), styrene–butadiene rubber, and polydimethylsiloxane (PDMS). All of these elastomers show similar and significant improvements in mechanical properties with FGS, indicating that the mechanism of property improvement is inherent to the FGS and not simply a function of chemical crosslinking. The decrease in gas permeability is attributed to the high aspect ratio of the FGS sheets. This creates a tortuous path mechanism of gas diffusion; fitting the permeability data to the Nielsen model yields an aspect ratio of ~1000 for the FGS. Electrical conductivity is demonstrated at FGS loadings as low as 0.08% in PDMS and reaches 0.3 S/m at 4 wt % loading in NR. This combination of functionalities imparted by FGS is shown to result from its high aspect ratio and carbon‐based structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
Ionic liquid 1‐allyl‐3‐methyl‐imidazolium chloride (AMICl) is used to fine‐tune the surface properties of graphene oxide (GO) sheets for fabricating ionic liquid functionalized GO (GO‐IL)/styrene‐butadiene rubber (SBR) nanocomposites. The morphology and structure of GO‐IL are characterized using atomic force microscope, X‐ray diffraction, differential scanning calorimetry, X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV‐vis spectra and Raman spectra. The interaction between GO and AMICl molecules as well as the effects of GO‐IL on the mechanical properties, thermal conductivity and solvent resistance of SBR are thoroughly studied. It is found that AMICl molecules can interact with GO via the combination of hydrogen bond and cation–π interaction. GO‐IL can be well‐dispersed in the SBR matrix, as confirmed by X‐ray diffraction and scanning electron microscope. Therefore, the SBR nanocomposites incorporating GO‐IL exhibit greatly enhanced performance. The tensile strength, tear strength, thermal conductivity and solvent resistance of GO‐IL/SBR nanocomposite with 5 parts per hundred rubber GO‐IL are increased by 505, 362, 34 and 31%, respectively, compared with neat SBR. This method provides a new insight into the fabrication of multifunctional GO‐based rubber composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
先用乙烯基三甲氧基硅烷(A-171)和二甲肼改性并还原氧化石墨烯(GO),制备A-171功能化的石墨烯(FG).研究结果表明A-171与GO上的羟基发生了反应,以共价键连接到了石墨烯的表面;FG能在四氢呋喃中均匀分散并且剥离成厚度约为0.9 nm的单一片层,其干燥后表面呈褶皱状.然后将FG与双组分硅树脂用溶液共混法制备了FG/硅树脂纳米复合材料.运用X射线衍射、扫描电子显微镜、动态热机械分析、拉伸试验等手段分析了复合材料的形态与性能,结果表明,与未处理过的石墨烯相比,FG在复合材料中有更好的分散和更强的界面作用.含0.5 wt%FG的复合材料的拉伸强度较硅树脂提高了87.7%,玻璃化温度提高了23.9℃,失重5%时的温度也提高了20.1℃.  相似文献   

15.
张树鹏 《化学学报》2012,70(12):74-80
通过溶液共混技术成功制备了一系列聚乙二醇功能化石墨烯(GO-PEG)填充的聚乙二醇4000(PEG4000)基纳米复合材料.利用红外(FT-IR)、X衍射(XRD)、扫描电镜(SEM)、热重(TG)及玻璃化转变温度(Tg)等表征手段详细研究了复合材料的结构和热性能.结果表明:GO-PEG可均匀分散在聚合物基体中,纳米复合材料呈层状结构;组分间的较强界面相互作用协同增强了纳米复合材料的热稳定性能.最终提出了层状纳米复合材料的形成过程及机理.  相似文献   

16.
Chlorinated polyethylene (CPE) nanocomposites were synthesized by melt blending clay-rich/poly(epsilon-caprolactone) (PCL) masterbatches to CPE matrices. The masterbatches were prepared following two synthetic routes: either PCL is melt-blended to the clay or it is grafted to the clay platelets by in situ polymerization. The microscopic morphology of the nanocomposites was characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and modulated temperature differential scanning calorimetry. When using free PCL, intercalated composites are formed, with clay aggregates that can have micrometric dimensions and a morphology similar to that of the talc particles used as fillers in commercial CPE. PCL crystallizes as long lamellae dispersed in the polymer matrix. When using grafted PCL, the nanocomposite is intercalated/exfoliated, and the clay stacks are small and homogeneously dispersed. PCL crystallizes as lamellae and smaller crystals, which are localized along the clay layers. Thanks to the grafting of PCL to the clay platelets, these crystalline domains are thought to form a network with the clay sheets, which is responsible for the large improvement of the mechanical properties of these materials.  相似文献   

17.
以鳞片石墨为原料, 首先通过Hummers法制备氧化石墨, 再将洗涤至中性的氧化石墨分散液与乙二胺反应得到功能化石墨烯。干燥后的功能化石墨烯在微波辐照下能瞬间产生高热, 促使接枝的乙二胺分子分解并实现对石墨烯原位掺杂制备出氮掺杂石墨烯。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、X射线衍射(XRD)、X射线能谱(EDS)对样品的形貌、结构和组成进行了表征。结果表明:该合成途径能成功实现对氧化石墨烯的还原和掺杂, 所合成的氮掺杂石墨烯呈现透明绢丝状结构。  相似文献   

18.
Graphene oxide–polyaniline composites were synthesized by an interfacial method using two green solvents, water and an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), as the two phases. The interfacial polymerization of aniline was carried out at room temperature in the presence of graphene oxide dispersed in the aqueous phase. The analysis revealed the surface of the graphene sheets to be coated with a smooth thin layer of polyaniline. The thermal stability of the composites was much better than that of bare graphene oxide. The composites were used to modify the glass carbon electrodes for the chemical detection of hydrogen peroxide in aqueous media. This method is a facile, efficient, and green route for the development of doped polyaniline materials suitable for chemical sensors.  相似文献   

19.
在原位聚合制备氧化石墨烯/聚酰亚胺复合材料的过程中,加入季铵盐表面活性剂,抑制氧化石墨烯在高温亚胺化时的聚集,同时将氧化石墨烯原位还原,获得高介电常数的石墨烯/聚酰亚胺复合材料.结果表明,采用四丁基溴化铵和四丁基碘化铵作为还原剂,利用原位化学还原方法所制备的石墨烯/聚酰亚胺复合材料的介电常数超过聚酰亚胺薄膜40倍以上,复合材料的热稳定性和机械性能也优于聚酰亚胺薄膜.热重分析结果表明,在复合材料高温亚胺化过程中,季铵盐发生热分解,未残留在复合材料中.  相似文献   

20.
The organophilic montmorillonite clay and poly(ethylene oxide) (PEO) nanocomposites were intercalated by a solvent casting method using chloroform as the cosolvent. The prepared nanocomposites were characterized by an X‐ray diffraction method to examine their microstructure. Rheological properties of both the PEO/clay nanocomposites and the immiscible PEO/clay blends were investigated via a rotational rheometer in steady shear mode with a parallel plate geometry. The shear thinning viscosity data were fitted with the Carreau model, which showed that steady shear viscosity increases with increasing clay loading. The hysteresis phenomenon is observed to be enhanced with clay loading. PEO/clay nanocomposites exhibit higher zero‐shear‐rate viscosity and sharper shear thinning behaviors than immiscible PEO/clay blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号