首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results concerning a new class of thermosensitive polymers based on modified poly(2,3-epoxypropanol-1) - the polyglycidol are presented. Thermo-responsive water-soluble poly(glycidol-co-ethyl glycidyl carbamate)s were obtained by the hydrophobic modification of hydroxyl groups of the polyglycidol chain with ethyl isocyanate. The cloud points of the synthesized poly(glycidol-co-ethyl glycidyl carbamate)s were measured by UV-VIS and the hydrodynamic behaviour of the polymer chains near the transition temperature was characterized by dynamic light scattering. The influence of copolymer composition and polymer concentration on the cloud point was investigated. The cloud point was easy controlled in a range from 22 to 81 °C by change of the degree of modification. The effect of the surfactant sodium n-dodecylsulphate (SDS) and inorganic salt (NaCl) on the temperature response of synthesized copolymer was also examined.  相似文献   

2.
Biopolymer materials have been considered a “green” alternative to petroleum-based polymeric materials. Biopolymers cannot completely replace synthetic polymers, but their application should be extended as much as possible, exploiting the benefits of their low toxicity and biodegradability. This contribution describes a novel strategy for the synthesis of super-macroporous 2-hydroxyethylcellulose (HEC) cryogels. The method involves cryogenic treatment of an aqueous solution of HEC and citric acid (CA), freeze drying, and thermally induced crosslinking of HEC macrochains by CA in a solid state. The effect of reaction temperature (70–180 °C) and CA concentration (5–20 mass % to HEC) on the reaction efficacy and physico-mechanical properties of materials was investigated. Highly elastic cryogels were fabricated, with crosslinking carried out at ≥100 °C. The storage modulus of the newly obtained HEC cryogels was ca. 20 times higher than the modulus of pure HEC cryogels prepared by photochemical crosslinking. HEC cryogels possess an open porous structure, as confirmed by scanning electron microscopy (SEM), and uptake a relatively large amount of water. The swelling degree varied between 17 and 40, depending on the experimental conditions. The degradability of HEC cryogels was demonstrated by acid hydrolysis experiments.  相似文献   

3.
Specific features of the polyelectrolyte behavior of weakly charged common gels and cryogels of copolymers of polyacrylamide and poly(N-isopropylacrylamide) with sodium acrylamido-2-methyl-1-propyl sulfonate are investigated. The cryogels are synthesized in frozen solutions at ?15°C. It is shown that the polyelectrolyte swelling is significantly weaker in the case of cryogels than that in the case of gels synthesized in solutions. For thermosensitive gels with isopropylacrylamide groups, collapse occurs during heating. Charging of a common gel leads to a noticeable (18°C) increase in the transition temperature. For a cryogel, this growth is 3°C. During the interaction with cetylpyridinium chloride, the gel contraction is much more pronounced for common weakly charged gels. At the same time, walls of pores of a collapsed cryogel contain a smaller amount of the solvent. Isotherms of the adsorption of a cationic surfactant by anionic common gels and cryogels differ insignificantly. Model gels synthesized in concentrated acrylamide solutions exhibit very weak polyelectrolyte swelling, similar to that of cryogels. The behavior of cryogels is explained by a very high local concentration of crosslinks due to a strong entanglement of polymer chains.  相似文献   

4.
The review is devoted to a specific kind of polymeric gels formed as a result of non-deep freezing of solutions or colloidal sols of the corresponding precursors. These materials are termed as cryogels. They possess a series of unique properties, first of all, the specific character of porosity (macroporous cryogels with the pore cross-section from tenth fractions of μm to ∼10 μm and supermacroporous (gigaporous) cryogels with pores of tens and hundreds of μm) and are attractive from the viewpoint of biotechnological implementation. Approaches to the preparation of the so-called “smart” composites based on the cryogels are considered. The use of various cryogels as carriers of immobilized biocatalysts (enzymes, cells), matrices for wide-porous affinity sorbents and immunosorbents, and spongy scaffolds for 3D culturing of animal cells is discussed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 996–1013, May, 2008.  相似文献   

5.
Hydrogels of biologically well‐tolerated, high‐molar‐mass polyglycidol (PGl) and its thermoresponsive derivative poly(glycidol‐co‐ethyl glycidyl carbamate) have been obtained by direct UV crosslinking in the solid state. Polymers with molar masses up to 1.45 × 106 g mol−1 were crosslinked in the presence of benzophenone or (4‐benzoylbenzyl)trimethylammonium chloride as photosensitizers. The photosensitizer concentration was varied from 2 to 10 wt%. The influence of polymer composition and photosensitizer type and amount on the crosslinking efficiency, swelling and temperature behavior of the obtained hydrogels was investigated. The photocrosslinking of PGl and poly(glycidol‐co‐ethyl glycidyl carbamate) led to hydrogels with swelling degrees up to 1700%. The swelling degrees of the hydrogels decreased with the increase of the environmental temperature indicating the thermoresponsive nature of gels. The swelling of obtained gels can be controlled by varying the composition of the copolymer precursor and by the network density.  相似文献   

6.
The adsorption of a rhodamine X labeled oligonucleotide composed of 25-mers of thymine (dT(25)-ROX) onto the thermosensitive shell of PMMA/PNIPAM core-shell latex particles was studied at 22 and 40 degrees C, below and above the T(VPT) (volume phase transition temperature) of the PNIPAM shell, respectively. The experimental binding isotherms were well fitted with the cooperative Hill model. The Hill coefficient is lower than 1 at both temperatures showing that the adsorption is anticooperative. The polarity of the shell was probed by both the lifetimes and solvatochromic shifts of the zwitterionic form of rhodamine X. For temperatures below the shell T(VPT) has a polarity similar to that of water, while for temperatures above the transition the polarity is equivalent to that of a water/dioxane mixture with 30% (v/v) water.  相似文献   

7.
Copolymerization of thermosensitive hydrogels based on poly(N-isopropylacrylamide) (PNIPA) is a possible route to enhanced storage capacity of guest molecules. This article describes the synthesis of the amphiphilic crown ether N9-propenoyl-3,6,12,15-tetraoxa-9,21-diazabicyclo[15.3.1]heneicosa-1(21),17,19-triene (CE) and its incorporation into a PNIPA hydrogel (PNIPA/CE). Mechanical measurements on the gel show that the CE units contribute to the elasticity of the network, but the swelling ratio in water is reduced compared to the unmodified system. The comonomer reduces the temperature of the volume phase transition (VPT), TVPT, and broadens the transition. Both the enthalpy and the entropy associated with the VPT decrease. Scattering measurements indicate that the local structural features on the scale of 10 A are unchanged, but the CE units form large clusters, the size of which increases with rising temperature. In the phase-separated state above TVPT these clusters are distributed on the polymer-water interface.  相似文献   

8.
Graft polymerization initiated by diperiodatocuprate(III) complex (Cu(III)) initiator was found to be an effective and convenient method for graft polymerization of vinyl monomers onto macroporous polyacrylamide gels, the so‐called cryogels (pAAm‐cryogels). The effect of time, temperature, monomer and initiator concentration during the graft polymerization in aqueous and aqueous‐organic media was studied. The graft polymerization of water‐soluble monomers as [2‐(methacryloyloxy)ethyl]‐trimethylammonium chloride, 2‐hydroxyethyl methacrylate, N‐isopropylacrylamide, and N,N‐dimethylacrylamide proceeds with higher grafting yield in aqueous medium, as compared with that in aqueous‐organic media. Graft polymerization in aqueous‐organic media such as water–DMSO solutions allows grafting of water‐insoluble monomers such as glycidyl methacrylate and Ntert‐butylacrylamide with high grafting degrees of 100 and 410%, respectively. It was found that the deposition of initiator on the pore surface of cryogels promoted graft polymerization by facilitating the formation of the redox couple Cu(III)‐acrylamide group. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1952–1963, 2006  相似文献   

9.
Novel water-soluble methylated chitins (MCHs) were synthesized homogeneously in aqueous alkaline solution. The relatively mild reaction conditions resulted in the MCH with high degree of acetylation (DA >0.76). The chemical structure of the obtained MCHs was analyzed and the degree of methylation substitution (DS) and DA were determined by proton NMR in both D2O and 20% DCl/D2O. The MCH aqueous solutions (DS = 0.46 ~ 0.71) showed a reversible thermosensitive sol–gel–sol transition upon heating and cooling. The gel transition temperature of these MCHs (in the range of 15–85 °C) increased with increasing DS and decreasing polymer concentration. Thermal runaway has been an important safety issue impeding the development of high-energy-density zinc-ion batteries. A smart thermosensitive reversible electrolyte was prepared based on this MCH for the aqueous zinc-ion battery to prevent thermal runaway. When the temperature of zinc-ion battery rises or even gets out of control, the thermosensitive electrolyte can quickly gel and inhibit the migration of zinc ions, resulting in increase of the internal resistance and realizing intelligent and efficient thermal self-protection. Thus the novel thermosensitive methylated chitin shows promise for safe aqueous zinc-ion batteries.  相似文献   

10.
We report the formation of novel thermosensitive hybrid core-shell particles via in situ synthesis of gold nanoparticles using thermosensitive core-shell particles as a template. The template core-shell particles, with cores composed mainly of poly(glycidyl methacrylate) (GMA) and shells composed mainly of poly(N-isopropylacrylamide) (PNIPAM), were synthesized in aqueous medium, and functional groups such as thiol groups were incorporated into each particle. We found that these particles containing thiol groups were effective for the in situ synthesis of gold nanoparticles in long-term storage. The obtained hybrid particles exhibited a reversible color change from red to purple, which originated from the surface plasmon resonance of gold nanoparticles and which was temperature-dependent in the range of 25-40 degrees C. In addition to their thermosensitive property, the hybrid particles exhibited the unique characteristic of uniform distribution on a solid substrate. The particles obtained by this approach have potential thermosensitive applications such as in sensors and photonic or electronic devices.  相似文献   

11.
Thermosensitive poly(N-isopropylacrylamide) moieties were introduced onto amphoteric styrene/glycidyl methacrylate copolymer seed microspheres prepared by use of amphoteric initiators. The resulting microspheres exhibited thermosensitive and amphoteric behavior, so dual sensitivity to both pH and temperature was observed. The colloidal properties of the microspheres before and after seeded polymerization were characterized by varying the temperature and the pH. The results indicated that the specific surface structure emerged when the environmental conditions were changed. In addition, the reactive epoxy groups on the microsphere surface could be utilized to immobilize the protein molecules. The behavior of protein adsorption and immobilization onto the microspheres was examined in order to understand their potential applications in biological areas.  相似文献   

12.
Thermosensitive Poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by a free radical solution polymerization in three different ways. Normal hydrogels were prepared at room temperature and normal cryogels were prepared at subzero temperature. A cation surfactant dodecyl dimethyl benzyl ammonium bromide (DDBAB) was used during preparation of novel cryogels in freezing state. The response rates of normal hydrogels were very slow, whereas the rates of both normal and novel cryogels were very fast because of the macroporous structure of the cryogels. Mixed solvents which were composed of pure water and 1,4‐dioxane at various concentrations were used instead of pure water during the polymerization. The effects of the mixed solvent on morphology, swelling ratio, and deswelling/reswelling kinetics of the three kinds of hydrogels were investigated. For normal hydrogels and normal cryogels, there was no remarkable difference no matter the mixed solvent or pure water was used. However, the properties of the resulted novel cryogels were much different with the concentration of dioxane. Finally, the resulted hydrogels were used for concentrating emulsified paraffin. The different separation performance was attributed to the different structure of gel matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6594–6603, 2008  相似文献   

13.
Macroporous viscoelastic poly(vinyl alcohol) (PVA) cryogels were prepared from aqueous PVA solutions containing additives (0–1.2 mol/l) of alkali metal chlorides (LiCl, NaCl, KCl, CsCl) by cryogenic treatment (freezing at −20°C for 12 h and subsequent thawing at a rate of 0.03°C/min). Shear moduli and fusion temperatures of corresponding samples were determined and the structure of thin sections was studied by optical microscopy with subsequent processing and analysis of images obtained. It was shown that the rigidity, heat endurance, and mean pore sizes of formed cryogels monotonically decrease with increasing content of chaotropic lithium chloride. In the case of other three salts, the dependences of rheological characteristics of cryogels on the concentration of low-molecular-weight electrolyte were extreme due to the competition between factors that promote and prevent PVA cryotropic gelation. At the same time, fusion temperatures of gel samples increased steadily with increasing content of these salts. Microscopic studies revealed substantial (by factor of two to three) decrease in macropore sizes even at low content of salt compared to mean cross sections of pores in cryogel containing no additive; morphometric analysis of obtained images makes it possible to reveal the linear correlations between the rheological characteristics of cryogels formed in the presence of LiCl and the sizes of their macropores.  相似文献   

14.
The present paper discusses synthesis, characterization, and blood compatibility studies of macroporous cryogels of PVA and starch. Biocompatible spongy porous hydrogels of polyvinyl alcohol–starch have been synthesized by repeated freezing–thawing methods and characterized by Infra red (FTIR) and environmental scanning electron microscopy (ESEM) techniques, respectively, to gain insights for structural and morphological features. The FTIR analysis of prepared cryogels indicated that starch was introduced into the network of cryogel possibly via formation of hydrogen bonds between the PVA and starch clusters. The “cryogels” were evaluated for their water uptake potentials and influence of various factors such as chemical architecture of the spongy hydrogels, pH and temperature of the swelling bath were investigated on the degree of water sorption by the cryogels. The hydrogels were also swollen in salt solutions and various simulated biological fluids. The biocompatibility of the prepared cryogels was judged by in vitro methods of blood–clot formation viz. percent haemolysis and protein (BSA) adsorption. The cryogels were also studied for their pores morphology and percent porosity and the effect of chemical composition on the extent of porosity was also investigated.  相似文献   

15.
Cryogenic treatment (freezing at −20°C for 12 h followed by defrosting at a rate of 0.03°C/min) of decane, dodecane, or tetradecane emulsions in a poly(vinyl alcohol) solution (80 g/l) is employed to prepare composite cryogels containing microdroplets of liquid hydrophobic fillers entrapped into a macroporous hydrogel matrix. The effects of the type of a hydrocarbon, the degree of filling, and the addition of a surfactant (decaethylene glycol cetyl ether) on the physicomechanical properties, heat endurance, and morphology of the composites are studied. It is shown that, an increase in the content of liquid hydrophobic fillers within some range of their volume fraction enhances the rigidity of corresponding cryogels. Incorporation of the nonionic surfactant into the initial emulsions results in a complex dependence of the rigidity of the resulting composite cryogels on surfactant concentration and variations in the morphology of pores in the gel phase. At the same time, the heat endurance of all examined composite cryogels weakly depends on the type and concentration of the hydrocarbon fillers, as well as the presence of surfactant additives.  相似文献   

16.
A novel method for the preparation of poly(acrylamide) cryogels by photoinitiated polymerization of monomeric precursors was described. A series of poly(acrylamide) cryogels were easily prepared by irradiating aqueous solutions containing acrylamide and N,N′‐methylene(bis)acrylamide as monomer and cross‐linker, respectively, in the presence of 1‐[4‐(2‐hydroxyethoxy)phenyl]‐2‐hydroxy‐2‐methyl‐1‐propane‐1‐one (Irgacure 2959) as water‐soluble photoinitiator with the help of freezing–thawing procedures. Photolysis was conducted at ?13 °C isothermally through specially designed cryostat‐integrated Rayonet merry‐go‐round photoreactor. On comparing the described photochemical method with the conventional redox counter part, the polymerization is initiated, and gelation proceeds only on external stimulation by light. This way, concomitant hydrogel formation usually observed with the redox process as a result of premature polymerization during the cooling process was prevented. The obtained cryogels exhibited superfast swelling behavior. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Monica Distaso 《Tetrahedron》2004,60(7):1531-1539
The activity of Sc(OTf)3 and La(OTf)3 (OTf=SO3CF3) as catalysts for the phosgene-free synthesis of carbamate esters via carbomethoxylation of aliphatic amines with dimethylcarbonate (DMC) has been investigated. In the presence of M(OTf)3 (M=Sc, La), primary and secondary aliphatic amines easily react with dimethylcarbonate, under very mild conditions (20 °C), to afford carbamate esters with good yield and excellent selectivity (≌100%). Sc(OTf)3 is a more effective catalyst than the homologue La salt. The carbomethoxylation reaction requires as strict anhydrous conditions, as, at 20 °C, the presence of water inhibits markedly the catalytic activity of both triflate salts. Temperature influences carbamate selectivity, which is lower at higher temperature because of deleterious formation of N-methylation side-products.  相似文献   

18.
Composite cryogels simulating the properties of waterproof screens of hydraulic structures, such as protruding dykes and dams, have been obtained by a cryogenic treatment (freezing at –10…–30°C followed by incubation in the frozen state for 12 h and defrosting at a rate of 0.03°C/min) of suspensions of calcium-carbonate-containing (marble or coquina) or cellulose-containing (microcrystalline cellulose or sawdust) particles in aqueous poly(vinyl alcohol) solutions. Viscometric examinations of initial suspensions have shown that adhesion contacts arise between filler particles, as well as discrete and continuous phases, already at the stage of suspension preparation, thereby affecting the properties of resulting cryogels. This is most pronounced when high-porosity sawdust is used as a filler. It has been shown that all the dispersed materials used in the work are “active” fillers for poly(vinyl alcohol) cryogels, these fillers increasing the rigidity of the formed composites. Therewith, porous particles, into which the polymer solution can penetrate, are more efficient. The dependence of the composite rigidity on the temperature of the cryogenic treatment has, as a rule, a bell-shaped pattern with a maximum in the region of –20°C. Being tested for water permeability, the obtained model composite cryogels have exhibited pronounced antifiltration properties (the filtration coefficient is ≤(1–2) × 10–9 cm/s), thus indicating that such materials are promising for solving problems relevant to the protection of fascine hydraulic structures from erosion with snow water.  相似文献   

19.
A new approach is reported on the use of poly(N-isopropylacrylamide) (PNIPAM)-coated molecularly imprinted beads (coated MIP beads) for controlling the release of protein. The coated MIP beads were composed of double layers, an internal thermosensitive lysozyme-imprinted layer, and an external PNIPAM layer. The coated MIP beads were prepared by two-step surface-initiated living-radical polymerization (SIP). In this systemic study, the coated MIP beads had good selectivity to the template protein (lysozyme) and temperature stimulus-responsive behavior, both of which were superior to those of MIP beads having a layer of thermosensitive lysozyme-imprinted polymer only. Using the coated MIP beads, reference proteins and the template lysozyme could be released separately at 38 °C and at 23 °C. The corresponding coated non-imprinted beads (coated NIP beads) did not have such double thermosensitive “gates” with specific selectivity for a particular protein. The proposed smart controlled imprinted system for protein is attractive for chemical carriers, drug-delivery system, and sensors.  相似文献   

20.
利用高效液相色谱进行不对称拆分是十分有效的方法,其中多糖类手性固定相是非常重要的一种,它主要包括纤维素和淀粉两大类,Okamoto等[1~3]合成了大量的纤维素和直链淀粉的衍生物,并将其涂敷在大孔硅胶表面,从而制备了手性拆分能力较强的多种固定相,这类...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号