首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear magnetic resonance (NMR) and dielectric spectroscopy (DS) methods were used to investigate the segmental and global dynamics in lamellar microphase separated poly(styrene-b-isoprene) (SI) diblock copolymer. For the first time, the susceptibility representation of the NMR relaxation data is applied to the analysis of the molecular dynamics in complex polymer systems like the diblock copolymer. This approach in combination with the frequency-temperature superposition (FTS) allows one to compare directly the NMR and DS data in an extended frequency range providing a unique comprehensive picture of various relaxation processes present in the system studied. The findings of these investigations include structural relaxations of the polyisoprene (PI) and the polystyrene (PS) blocks, a normal mode relaxation of the PI block, and an extra low frequency interfacial relaxation. Special attention has been devoted to influence of the copolymer morphology on the segmental and global dynamics in PI.  相似文献   

2.
A detailed dielectric characterization of n-ethylene glycol dimethacrylate monomers with n = 2 and 4 is provided. Besides the α relaxation associated to the glass transition, two secondary relaxation processes were detected: the γ process assigned to the twisting motions within the ethylene glycol moiety, and the β process related with hindered rotations of carboxylic groups. While the relaxation time of the γ process is independent of the size of the ethylene glycol group, the β process deviates to higher times with increasing n. Upon polymerization the α process goes to extinction, faster in the 4-ethylene monomer, with a concomitant depletion of the β process that remains at higher polymerization degrees relatively to the α process, thus acting as a more sensitive probe to evaluate conversion. The height decrease of α and β processes of monomers with the polymerization progress, occurs without significant changes of position. At intermediate states of polymerization, a new relaxation process evolves being only detectable in a narrow temperature range. In the end, the polymer networks show, in addition to the γpol relaxation identical to the γ relaxation of the monomer, a βpol relaxation with similar features to the β relaxation found in poly n-alkyl methacrylates originated by a π flip of the ester unit accompanied by a restricted main chain rearrangement. The main dielectric relaxation corresponding to the swollen polymer network should appear at quite high temperatures already in early stages of the polymerization process because phase segregation occurs and only a limited amount of liquid monomer plasticizes the newly formed material.  相似文献   

3.
We have critically examined the various relaxation processes occurring in poly(cyclohexylmethacrylate) using dielectric spectroscopy. In addition to the α- and γ-processes found earlier by other workers, we have detected a secondary (β-)process in the temperature range of 293-353 K with an activation energy of about 73 ± 5 kJ/mol.  相似文献   

4.
The real‐time crystallization of absorbable poly(p‐dioxanone) (PDS) was studied by dielectric relaxation spectroscopy. The dipole dynamic changes in the diminishing amorphous phase were investigated over a wide range of crystallization conditions. The location, shape, and magnitude of the α relaxation and the apparent activation energy were monitored and compared before and after the onset of crystallization. We observed no correlation between the degree of crystallinity and the location (hence, the most probable relaxation time, τ) of the α relaxation from just after the initiation up to the latest stages of the isothermal crystallization. However, an abrupt change in the intensity of the α process and the apparent activation energy allowed for the precise detection of the onset of crystallization. This was probably caused by a reorganization of dipole units occurring a few moments before the crystallization began. As crystallization proceeded, an asymmetric broadening of the α peak was observed that was directly influenced by the appearance of a new lower frequency process that originated in the highly confined amorphous portion located inside the spherulites. Finally, PDS crystallization kinetics determined from the changes of the relaxed permittivity with time are discussed and compared with calorimetric and optical microscopy data. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2436–2448, 2000  相似文献   

5.
This paper reports the first use of temperature–temperature 2D correlation dielectric relaxation spectroscopy (2D COS‐DRS) to study the molecular relaxation dynamics in ion‐irradiated poly(ether ether ketone) (PEEK). With the help of the high resolution and high sensitivity of 2D COS‐DRS, it was possible to locate the position of the motion of water molecules in the dielectric spectrum of PEEK. This occurred at −20°C and increased in intensity on increasing water contents. On irradiation, a new relaxation was observed at −75°C and −85°C for proton and helium ion‐irradiated samples, respectively. This increased in intensity on increasing radiation dose and was assigned to main‐chain phenyl motions of the cross‐linked units of the polymer. 2D COS‐DRS was also successfully applied to resolve the overlap in molecular events in the region of glass transition. Three processes that change in different directions with respect to ion irradiation dose were identified. These were at 160°C, 175°C, and 240°C and were assigned to the α relaxation, second α relaxation, and the onset of conductivity, respectively. In addition, hybrid 2D COS‐DRS was used to investigate the effect of the so‐called linear energy transfer effect, and the results showed that helium ions were more effective in cross‐linking PEEK. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Binary blends of atactic poly(epichlorohydrin) (aPECH) and poly(3-hydroxybutyrate) (PHB) were investigated as a function of blend composition and crystallization conditions by dielectric relaxation spectroscopy. The quenched samples were found to be miscible in the whole composition range by detecting only one glass transition relaxation, for each composition, which could be closely described by the Gorden-Taylor equation. The cold-crystallized blends displayed two glass transition relaxations at all blend ratios indicating the coexisting of two amorphous populations: a pure aPECH phase dispersed mainly in the interfibrillar zones and a mixed amorphous phase held between crystal lamellae. The interlamellar trapping of aPECH was small and decreases with increasing the overall PHB content in the blend. At high crystallization temperatures the aPECH molecules was found to reside mainly in the interfibrillar regions due to its high mobility relative to the crystal growth rate of PHB. Our results suggest that because the intersegmental interaction in aPECH/PHB blends is weak, the mobility of the amorphous component at a given crystallization temperature decides diluent segregation.  相似文献   

7.
Dielectric relaxation spectroscopy was used to investigate the effect of the inorganic phase on the polymeric relaxation dynamics in PMMA/silica hybrids synthesized in situ via sol-gel processes. It was found that the large-scale molecular motions of PMMA were influenced by the addition of silica, inducing longer mean relaxation times, more heterogeneous relaxing environments and the higher activation energy. Explanations based on hydrogen-bond interactions between two phases and a fraction of entrapped chain segments in silica networks were proposed to understand the influence of the silica.  相似文献   

8.
Macromolecular dynamics of sulfonated poly(styrene-b-ethylene-ran-butylene-b-styrene) (sSEBS) triblock copolymers were investigated using broadband dielectric spectroscopy (BDS). Two main relaxations corresponding to the glass transitions in the EB and S block phases were identified and their temperature dependences were VFT-like. Tg for the S block phase shifted to higher temperature due to restrictions on chain mobility caused by hydrogen bonded SO3H groups. While the EB block phase Tg appeared to remain constant with degree of sulfonation in DMA experiments, it shifted somewhat upward in BDS spectra. A low temperature relaxation beneath the glass transition of the EB block phase was attributed to short range chain motions. The Kramers–Krönig integral transformation was used to calculate conductivity-free loss permittivity spectra from real permittivity spectra to enhance true relaxation peaks. A loss permittivity peak tentatively assigned to relaxation of internal S-EB interfacial polarization was seen at temperatures above the S block phase glass transition, and the temperature dependence of this relaxation was VFT-like. The fragilities of the EB and S block domains in sulfonated SEBS decreased after sulfonation. The temperature dependence of the dc conduction contribution to sSEBS loss spectra also followed VFT-like behavior and S block segmental relaxation time correlated well with conductivity according to the fractional Debye–Stokes–Einstein equation.  相似文献   

9.
The molecular dynamics of poly(vinyl acetate), PVAc, and poly(hydroxy butyrate), PHB, as an amorphous/crystalline polymer blend has been investigated using broadband dielectric spectroscopy over wide ranges of frequency (10−2 to 105 Hz), temperature, and blend composition. Two dielectric relaxation processes were detected for pure PHB at high and low frequency ranges at a given constant temperature above the Tg. These two relaxation peaks are related to the α and α′ of the amorphous and rigid amorphous regions in the sample, respectively. The α′-relaxation process was found to be temperature and composition dependent and related to the constrained amorphous region located between adjacent lamellae inside the lamellar stacks. In addition, the α′-relaxation process behaves as a typical glass relaxation process, i.e., originated from the micro-Brownian cooperative reorientation of highly constraints polymeric segments. The α-relaxation process is related to the amorphous regions located between the lamellar crystals stacks. In the PHB/PVAc blends, only one α-relaxation process has been observed for all measured blends located in the temperature ranges between the Tg’s of the pure components. This last finding suggested that the relaxation processes of the two components are coupled together due to the small difference in the Tg’s (ΔTg = 35 °C) and the favorable thermodynamics interaction between the two polymer components and consequently less dynamic heterogeneity in the blends. The Tg’s of the blends measured by DSC were followed a linear behavior with composition indicating that the two components are miscible over the entire range of composition. The α′-relaxation process was also observed in the blends of rich PHB content up to 30 wt% PHB. The molecular dynamics of α and α′-relaxation processes were found to be greatly influenced by blending, i.e., the dielectric strength, the peak broadness, and the dielectric loss peak maximum were found to be composition dependent. The dielectric measurements also confirmed the slowing down of the crystallization process of PHB in the blends.  相似文献   

10.
A curious, strong dielectric relaxation process (δ) was found in rapidly cooled poly(ethylene naphthalate). This process, which is located between two known β and β* relaxations of PEN, appears predominantly after rapid cooling and remains present even after heating above the glass transition temperature. In view of its very low activation energy of ∼10 kJ/mol, its markedly high relaxation strength of up to Δɛ=5, and its Debye-like peak shape, a collective relaxation mechanism is proposed, which involves collective crankshaft motions of the -O-CH2-CH2-O- sequences in a regular arrangement of the main chains. The analogy between this δ-relaxation and an ultra-slow relaxation recently found in the smectic E phase of a side-chain liquid crystalline polymer suggests a (close-to) hexagonal smectic ordering in PEN. The very existence of liquid-crystalline order in PEN is corroborated by the observation of a thermo-reversible discontinuity in the relaxation parameters around −90 °C, which resembles a broadened LC-LC phase transition. Re-evaluation of experimental data of the β* relaxation, which occurs in the non-crystalline fraction of PEN, suggests that this relaxation is sensitive to the local orientational order, which extends from nematic to isotropic. The shift in the temperature of the β* peak and even the splitting of this peak found by other authors can be ascribed to the lowering of the activation energy by the local ordered packing of the PEN chains in line with a lower activation energy in the nematic order. The coexistence of isotropic and nematic regions in PEN is put in the context of orientational order fluctuations during the induction period of cold crystallisation of semi-flexible polymers. Received: 31 August 2000 Accepted: 30 October 2000  相似文献   

11.
Dielectric spectroscopy (10–1 Hz to 107 Hz) has been employed to study the molecular dynamics of a series of cyclic and linear polydimethylsiloxanes (PDMS) of various molecular weights ranging from 300 to 10 000 g/mol in the temperature range above the glass transition (from 130 K to 190 K). The observed -relaxation depends strongly on both molecular weight and structure of the samples. For linear PDMS oligomers, the -relaxation shifts towards lower temperatures with decreasing molecular weight in good accordance with the Fox-Flory-model. Cyclic PDMS reveals a qualitatively different molecular weight dependence: for a given temperature the -relaxation time increases with decreasing ring length, but has a maximum for small oligomers (degree of polymerizationn6). The shape of relaxation curves and, with it, the relaxation time distribution is independent from length and architecture of the chains The observed experimental findings are in qualitative agreement with dynamic Monte-Carlo simulations.Dedicated to Prof. E.W. Fischer on the occasion of his 65th birthday Fast macht' das WLF ihn krank, jetzt raucht er wieder, Gott sei Dank! (frei nach Wilhelm Busch)  相似文献   

12.
Temperature-induced phase transition in water solutions of poly(N-isopropylacrylamide) (PNIPAM) and poly(N-isopropylmethacrylamide) (PNIPMAM) have been studied by ATR FTIR and Raman spectroscopy in combination with quantum chemical calculations. The presence or absence of the α-methyl group has a strong effect on the physical structure of water solutions. Although the hydrophobic interactions for PNIPMAM and PNIPAM are very similar, PNIPMAM with additional methyl group exhibits significantly weaker intermolecular interactions between the amide groups. That effect is the cause of the higher transition temperature Tt by about 8 °C for PNIPMAM compared to PNIPAM due to the formation of larger compact structures. The presence of the methyl group is significant for the reversibility of the temperature transition during the backward cooling as the dissolution of more stable compact PNIPMAM requires overcoming of a higher energy barrier and shows a strong hysteresis.  相似文献   

13.
Poly(epichlorohydrin) has been modified chemically using aromatic and aliphatic thiol compounds. The NMR results show that using both aromatic and aliphatic thiols, one achieves degrees of modification of up to 90% without any elimination side reaction. As a consequence no degradative chain-scission takes place. A microstructural analysis of the modified polymers has been carried out by 13C NMR, 1H NMR and 13C DEPT spectroscopy. Additionally, 2D heteronuclear correlated spectroscopy (HMQC and HMBC) were used in order to determine the chemical shifts of quaternary carbons.  相似文献   

14.
Water and polymer dynamics in hydrogels based on random copolymers of hydrophilic poly(hydroxyl ethyl acrylate) (PHEA) and hydrophobic poly(ethyl acrylate) (PEA), in wide ranges of composition, were investigated by means of two dielectric techniques, thermally stimulated depolarization currents (TSDC) and, mainly, broadband dielectric relaxation spectroscopy (DRS) at several levels of relative humidity/water content. Water sorption of the hydrogels was studied by equilibrium sorption isotherms (ESI). Two secondary relaxations (γ and βsw) and the primary (segmental) α relaxation associated with the glass transition of the copolymer matrix were followed and analyzed against copolymer composition and water content. The results show that the copolymers are homogeneous at nm scale, except at very high PEA content. Correlations were observed between results on the organization of water in the hydrogels and on water effects on polymer dynamics. Distinct changes in the dielectric response, in particular in the time scale and the dielectric strength of the βsw relaxation, at the water content of the completion of the first hydration layer indicate that water molecules themselves contribute to the dielectric response at higher water contents. Proton conductivity of the hydrogels at various levels of water content was also studied and correlation to segmental dynamics (decoupling) was analyzed.  相似文献   

15.
This work reports the mechanical and dielectric relaxation spectra of three difluorinated phenyl isomers of poly(benzyl methacrylate), specifically, poly(2,4‐difluorobenzyl methacrylate), poly(2,5‐difluorobenzyl methacrylate) and poly(2,6‐difluorobenzyl methacrylate). The strength of the dielectric glass–rubber relaxation of the 2,6 difluorinated phenyl isomer is, respectively, nearly three and two times larger than the strengths of the 2,5 and 2,4 isomers. The 2,4 isomer presents a mechanical α peak the intensity of which is nearly two times that of the other two isomers. Both the mechanical and dielectric relaxation spectra display a subglass process, called γ relaxation, centered in the vicinity of −50 °C at 1 Hz and, in some cases, a subglass β absorption is detected at higher temperature partially masked by the glass–rubber relaxation. The mean‐square dipole moments per repeating unit, 〈μ2〉/x, measured at 25 °C in benzene solutions, are 2.5 D2, 1.9 D2, and 5.0 D2 for poly(2,4‐difluorobenzyl methacrylate), poly(2,5‐difluorobenzyl methacrylate) and poly(2,6‐difluorobenzyl methacrylate), respectively. These results, in conjunction with Onsager type equations, permit to conclude that auto and cross‐correlation contributions to the dipolar correlation coefficient may have the same time‐dependence. On the other hand, dipole intermolecular interactions, rather than differences in the flexibility of the chains, seem to be responsible for the relatively high calorimetric glass‐transition temperature of the 2,6 diphenyl isomer, which is, respectively, nearly 36 °C and 32 °C above the Tg's of the 2,4 and 2,5 isomers. Molecular Mechanics calculations give a good account of the differences observed in the polarity of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2179–2188, 2000  相似文献   

16.
Complexes of poly(methacrylic acid) (PMAA) and poly(ethylene oxide) (PEO) with different PEO molecular weight were studied by solid-state high-resolution 13C NMR spectroscopy, with the emphasis on the PEO molecular weight effect on inter-polymer interaction, morphology and molecular motion. It is found that the crystalline phase of PEO is completely destroyed in the complex. The results of 1H transverse relaxation times and 13C spin-lattice relaxation times indicate that the chain mobility of both PEO and PMAA are greatly restricted by inter-molecular hydrogen-bonding interactions, especially when the molecular weight of PEO is 1500. The bulk structures of the complexes are found to be closely dependent on the molecular weight of PEO. The fraction of “free” PEO segments without forming hydrogen-bonds with PMAA increases with increasing PEO molecular weight.  相似文献   

17.
Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. 1H and 13C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.  相似文献   

18.
Linear telechelic, α,ω‐ditelechelic, and star‐shaped tri‐, tetra‐, penta‐, and hexa‐arm poly(L ‐lactide)s (PLAs) fitted at every arm with pyrene end group have been prepared. Internal dynamics and mobility of the PLA chains in tetrahydrofuran solution at 25 °C, with regard to the number of PLA arms in one macromolecule and the individual arm average degree of polymerization, was followed by fluorescence spectroscopy. Analysis of both static and time‐resolved spectra of the star‐shaped polymers revealed dynamic segmental motion resulting in end‐to‐end cyclization, accompanied by an excimer formation. Probability and rate of the latter reaction increased with increasing number of arms and with decreasing their polymerization degree. Moreover, time‐resolved measurements revealed that for macromolecules containing few arms (2 or 3) the pyrene moieties are located in the interior of the star‐shaped PLAs, whereas in the instance of the higher number of arms (4–6) they are located at the periphery of the star‐shaped PLAs. Thus, increasing the number of arms leads to their stretching away from the center of the star‐shaped PLA macromolecule. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4586–4599, 2005  相似文献   

19.
Poly(vinyl alcohol) (PVA) (polymer A) and poly(N-vinylpyrrolidone) (PVP) (polymer B) are known to form a thermodynamically miscible pair. In the present study the conclusion on miscibility of PVA/PVP solid blends, confirmed qualitatively (DMTA, FTIR) and quantitatively (DSC, χAB = − 0.69 at 503 K) is compared with the miscibility investigations of PVA/PVP solution blends by the technique of dilute solution viscometry. The miscibility of the ternary (polymer A/ polymer B/ solvent) system is estimated on the basis of experimental and ideal values of the viscosity parameters k, b and [η]. It is found that the conclusions on miscibility or nonmiscibility drawn from viscosity measurements in dilute solution blends depend: (i) on the applied extrapolation method used for the determination of the viscosity interaction parameters, (ii) on the assumed definition of the ideal values and (iii) on the thermodynamic quality of the solvent, which in the case of PVA depends on its degree of hydrolysis. Hence, viscometric investigations of dilute PVA/PVP solution blends have revealed that viscometry, widely used in the literature for estimation of polymer-polymer miscibility can not be recommended as a sole method to presume the miscibility of a polymer pair.  相似文献   

20.
A series of alternating maleimide (MI) copolymers with fluorinated side chains have been investigated using broadband dielectric spectroscopy. The side chains consist of fluoroalkane (–C x F2x+1, x=1, 7, 9) end groups connected to the main chain via methylene spacers. The experiments were carried out in a frequency range of 0.1 Hz to 10 MHz and at temperatures between 120 K and 500 K. The fluorinated MI copolymers show a fast sub-T g (β) relaxation characterized by an Arrhenius-type temperature dependence with activation energy in the range of 30–37 kJ/mol. Two more processes (α and δ-like) are observed, corresponding to independent relaxations of the main chain and the fluoroalkane domains respectively. For shorter side chains, the δ-like process is not observed but instead another relaxation process, α S , occurs at temperatures higher than either the α and δ-like processes. When compared with unfluorinated MI copolymers, the fluorinated MI copolymers show the δ-like process and a slower β-relaxation unlike their unfluorinated counterparts. A model to explain the molecular origin of the four processes is proposed, supplemented by differential scanning calorimetry and published WAXS/SAXS data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号