首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soluble poly(methyl methacrylate‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PMMA–POSS) hybrid nanocomposites with improved Tg and high thermal stability were synthesized by common free radical polymerization and characterized using FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA. The POSS contents in the nanocomposites were determined based on FTIR spectrum, revealing that it can be effectively adjusted by varying the feed ratio of POSS in the hybrid composites. On the basis of the 1H NMR analysis, the number of the reacted vinyl groups on each POSS molecules was determined to be about 6–8. The DSC and TGA measurements indicated that the hybrid nanocomposites had higher Tg and better thermal properties than the pure PMMA homopolymer. The Tg increase mechanism was investigated using FTIR, displaying that the dipole–dipole interaction between PMMA and POSS also plays very important role to the Tg improvement besides the molecular motion hindrance from the hybrid structure. The thermal stability enhances with increase of POSS content, which is mainly attributed to the incorporation of nanoscale inorganic POSS uniformly dispersed at molecular level. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5308–5317, 2007  相似文献   

2.
With advances in nanoscience and nanotechnology, there is increasing interest in polymer nanocomposites, both in scientific research and for engineering applications. Because of the small size of nanoparticles, the polymer–filler interface property becomes a dominant factor in determining the macroscopic material properties of the nanocomposites. The glass‐transition behaviors of several epoxy nanocomposites have been investigated with modulated differential scanning calorimetry. The effect of the filler size, filler loading, and dispersion conditions of the nanofillers on the glass‐transition temperature (Tg) have been studied. In comparison with their counterparts with micrometer‐sized fillers, the nanocomposites show a Tg depression. For the determination of the reason for the Tg depression, the thermomechanical and dielectric relaxation processes of the silica nanocomposites have been investigated with dynamic mechanical analysis and dielectric analysis. The Tg depression is related to the enhanced polymer dynamics due to the extra free volume at the resin–filler interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3849–3858, 2004  相似文献   

3.
The IPI‐POSS‐modified epoxy resin (IPEP) was prepared from isocyanato‐propyldinethylsilyl‐isobutyl‐POSS (IPI‐POSS) and diglycidyl ether of bisphenol A epoxy resin. The steric hindrance of the IPEP bulky POSS side chain improved the curing activation energies. The POSS particles sizes were about 2–3 nm and dispersed uniformly. At lower IPEP concentration (POSS < 12 wt %), the glass transition temperatures (Tgs) of the IPEP nanocomposites increased from 118 to 170 °C. The char yield increased from 15 to 20 wt %, and the LOI values increased from 22 to 28. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 643–652, 2010  相似文献   

4.
Block and random polyhedral oligomeric silsesquioxane (POSS)/fluorinated poly aryl ether sulfone tricopolymers were synthesized using different synthetic strategies to investigate the effect of sequence distribution on their thermal, dielectric, and surface properties. Analyses indicated that all block and random copolymers showed similar growth tendency of water contact angles and Tg values, downward tendency of k values with increased content of POSS. The block copolymer displayed higher Tg values up to 187°C than random copolymers (173°C) under the same POSS molar percentage, which were highly related to their different sequence distribution. The dielectric constants of the tricopolymers were drastically reduced because of the presence of POSS and fluorine, and the dielectric constant could achieve as low as 2.71 (1 MHz). Besides, sequence distribution has no obvious influence on its surface properties and properties. Meanwhile, the yields of degradation residues of the tricopolymers were significantly improved by the ceramic formation from POSS moieties during thermal decomposition. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Poly[isobutyl methacrylate‐co‐butanediol dimethacrylate‐co‐3‐methacrylylpropylheptaisobutyl‐T8‐polyhedral oligomeric silsesquioxane] [P(iBMA‐co‐BDMA‐co‐MA‐POSS)] nanocomposites with different crosslink densities and different polyhedral oligomeric silsesquioxane (MA‐POSS) percentages (5, 10, 15, 20, and 30 wt %) were synthesized by radical‐initiated terpolymerization. Linear [P(iBMA‐co‐MA‐POSS)] copolymers were also prepared. The viscoelastic properties and morphologies were studied by dynamic mechanical thermal analysis, confocal microscopy, and transmission electron microscopy (TEM). The viscoelastic properties depended on the crosslink density. The dependence of viscoelastic properties on MA‐POSS content at a low BDMA loading (1 wt %) was similar to that of linear P(iBMA‐co‐MA‐POSS) copolymers. P(iBMA‐co‐1 wt % BDMA‐co‐10 wt % MA‐POSS) exhibited the highest dynamic storage modulus (E′) values in the rubbery region of this series. The 30 wt % MA‐POSS nanocomposites with 1 wt % BDMA exhibited the lowest E′. However, the E′ values in the rubbery region for P(iBMA‐co‐3 wt % BDMA‐co‐MA‐POSS) nanocomposites with 15 and 30 wt % MA‐POSS were higher than those of the parent P(iBMA‐co‐3 wt % BDMA) resin. MA‐POSS raised the E′ values of all P(iBMA‐co‐ 5 wt % BDMA‐co‐MA‐POSS) nanocomposites in the rubbery region above those of P(iBMA‐co‐5 wt % BDMA), but MA‐POSS loadings < 15 wt % had little influence on glass‐transition temperatures (Tg's) and slightly reduced Tg values with 20 or 30 wt % POSS. Heating history had little influence on viscoelastic properties. No POSS aggregates were observed for the P(iBMA‐co‐1 wt % BDMA‐co‐MA‐POSS) nanocomposites by TEM. POSS‐rich particles with diameters of several micrometers were present in the nanocomposites with 3 or 5 wt % BDMA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 355–372, 2005  相似文献   

6.
The curing reaction and kinetics of o‐cresol formaldehyde epoxy resin (o‐CFER) with polyhedral oligomeric silsesquioxane of N‐aminoethyl‐γ‐amino propyl group (AEAP‐POSS) were investigated by differential scanning calorimetry (DSC). The thermal, mechanical, and dielectric properties of o‐CFER/AEAP‐POSS nanocomposites were investigated with thermogravimetric analysis (TGA), torsional braid analysis (TBA), tensile tester, impact tester, and electric analyzer, respectively. The results show that the activation energy (E) of curing reaction is 58.08 kJ/mol, and the curing reaction well followed the ?esták‐Berggren (S‐B) autocatalytic model. The glass transition temperature (Tg) increases with the increase in AEAP‐POSS content, and reaches the maximum, 107°C, when the molar ratio (Ns) of amino group to epoxy group is 0.5. The nanocomposites containing a higher percentage of AEAP‐POSS exhibited a higher thermostability. The AEAP‐POSS can effectively increase the mechanical properties of epoxy resin, and the tensile and impact strengths are 2.84 MPa and 143.25 kJ m?2, respectively, when Ns is 0.5. The dielectric constant (ε), dielectric loss factor (tan δ), volume resistivity (ρv), and surface resistivity (ρs) are 4.98, 3.11 × 10?4, 3.17 × 1012 Ω cm3, and 1.41 × 1012 Ω cm2, respectively, similarly at Ns 0.5. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Poly(methyl methacrylate) (PMMA) nanocomposites containing (methacryloxy)propyl polyhedral oligomeric silsesquioxane (methacryl‐POSS) were prepared by bulk‐polymerization process. The structures of the products were characterized by FTIR, solid‐state NMR, TEM, XRD, DSC, TGA, XPS and UV‐Vis spectra. The hybrid materials were found to be largely homogeneous. DSC and TGA results indicate that the thermal properties of PMMA nanocomposites are significantly improved. The glass transition temperature (Tg) and thermal decomposition temperature (Tdec) of the nanocomposites increased by 58 and 110°C, respectively. The bulk hybrid material maintains excellent optical transparency in visible region.  相似文献   

8.
We show that the thermomechanical properties of polymer nanocomposites are critically affected by polymer-particle wetting behavior. Silica nanoparticles grafted with dense polystyrene brushes of degree of polymerization 1050 are blended with polystyrene melts to form nanocomposites. It was found that low molecular weight (MW) polystyrene melts with lengths <880 wet these particles. Concurrently, the glass transition temperature (Tg) of the nanocomposite increases. At higher MW, the matrix does not wet the particles and the Tg decreases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2944–2950, 2006  相似文献   

9.
The morphology and thermal properties of Allylisobutyl Polyhedral Oligomeric Silsesquioxane (POSS)/Polybutadiene (PB) nanocomposites prepared through anionic polymerization technique were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and TEM showed that the aggregation of POSS in PB matrix occurred obviously, forming crystalline domains and the size of POSS particles increased with increasing POSS content. The DSC and TGA results indicated that the glass transition temperature (T g) of the nanocomposites was significantly increased and the maximum degradation temperature (T dmax) of nanocomposites was slightly increased compared with pure PB, implying an increase in thermal stability.  相似文献   

10.
A series of copolyimides were prepared from benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA) and various aromatic diamines which contain a fluorenyl group and/or alkyl substituents in ortho position to the amine groups. The effect of the chemical composition on the glass transition temperature (Tg), thermal stability as well as on the dielectric constant of these polymers was studied. High Tg polymers (Tg ranging from 260 °C to 370 °C), withstanding temperatures as high as 400 °C for 10 h and having a low dielectric constant (from 2.6 to 3.1) were successfully synthesized. All these polymers were able to crosslink under UV or thermal treatments.  相似文献   

11.
We have used molecular simulations to study the properties of nanocomposites formed by the chemical incorporation of polyhedral oligomeric silsesquioxane (POSS) particles in the cross-linked epoxy network. The particular POSS molecule chosen—glycidyloxypropyl-heptaphenyl POSS—can form only one bond with the cross-linker and thus was present as a dangling unit in the network. Four epoxy-POSS nanocomposites containing different fractions (up to 30 mass/%) of POSS particles were studied in this work. Well-relaxed atomistic model structures of the nanocomposites were created and then molecular dynamics simulations were used to characterize the density, glass transition temperature (T g), and the coefficient of volume thermal expansion (CVTE) of the systems. In addition to the effect of nanoparticle loading, the effect of nanoparticle chemistry on the nanocomposite properties was also characterized by comparing these results with our previous results (Lin and Khare, Macromolecules 42:4319–4327, 2009) on neat cross-linked epoxy and a nanocomposite containing a POSS nanoparticle that formed eight bonds with the cross-linked network. Our results showed that incorporation of these monofunctional POSS particles into cross-linked epoxy does not cause a measurable change in its density, glass transition temperature, or the CVTE. Furthermore, simulation results were used to characterize the aggregation of POSS particles in the system. The nanofiller particles in systems containing 11, 20, and 30 mass/% POSS were found to form small clusters. The cluster-size distribution of nanoparticles was also characterized for these systems.  相似文献   

12.
Thermostable densely crosslinked cyanate ester resins (CER) with different chemical structures, derived from monomer dicyanate esters of bisphenol E (DCBE), bisphenol A (DCBA), hexafluorobisphenol A (6F‐DCBA) or from cyanated phenol‐formaldehyde oligomer PT‐30, and the nanocomposites based thereon, with 0.01 to 10 wt% epoxycyclohexyl‐functionalized polyhedral oligomeric silsesquioxane (ECH‐POSS), were synthesized and characterized by means of dynamic mechanical analysis, differential scanning calorimetry, far‐infrared, and creep rate spectroscopy techniques. As shown, thermal and mechanical properties increased in a row of matrices prepared from DCBE < DCBA < 6F‐DCBA < PT‐30. Thus, these matrices with Tg = 248, 275, 300, and ~400°C (DMA, 1 Hz), respectively, had dynamic modulus E′ values of 1.8, 2.7–3.0, and 3.6 GPa at 20°C; high rigidity (dynamic modulus of about 1–2 GPa) retained at temperatures up to 200°C for DCBE matrix, 250°C for DCBA and 6F‐DCBA matrices, but up to 380°C for PT‐30‐based matrix. The maximal effects from introducing ECH‐POSS nanoparticles, covalently embedded into CER network, were attained mainly at their ultra‐low contents (<<1 wt%); however, the ECH‐POSS impact decreases in a row of matrices prepared from DCBE > DCBA > 6F‐DCBA > PT‐30. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Polyhedral oligomeric silsequioxane (POSS), having eight hydroxyl groups for the preparation of nanocomposites with polyimide (PI) was synthesized by the direct hydrosilylation of allyl alcohol with octasilsesquioxane (Q8M8H) with platinum divinyltetramethyl disiloxane Pt(dvs) as a catalyst. The structure of allyl alcohol terminated‐POSS (POSS‐OH) was confirmed by FTIR, NMR, and XRD. A high performance, low‐k PI nanocomposite from pyromellitic dianhydride (PMDA)‐4,4'‐oxydianiline (ODA) polyamic acid cured with POSS‐OH was also successfully synthesized. The incorporation of POSS‐OH into PI matrix reduced dielectric constant of PI without loosing mechanical properties. Furthermore, the effects of POSS‐OH on the morphology and properties of the PI/POSS‐OH nanocomposites were investigated using UV–vis, FTIR, XRD, SEM, AFM, transmission electron microscope (TEM), TGA, and contact angle. The homogeneous dispersion of POSS particles was confirmed by SEM, AFM, and TEM. The nanoindentation showed that the modulus increased upon increasing the concentration of POSS‐OH in PI, whereas the hardness did not increase very much with respect to loading of POSS, due to soft‐interphase around POSS molecules in the resulting nanocomposites. Overall results demonstrated the nanometer‐level integration of the polymer and POSS‐OH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5887–5896, 2008  相似文献   

14.
Poly(lactic acid)/organo-montmorillonite nanocomposites were prepared by melt intercalation technique. Maleic anhydride-grafted ethylene propylene rubber (EPMgMA) was added into the PLA/OMMT in order to improve the compatibility and toughness of the nanocomposites. The samples were prepared by single screw extrusion followed by compression molding. The effect of OMMT and EPMgMA on the thermal properties of PLA was studied. The thermal properties of the PLA/OMMT nanocomposites have been investigated by using differential scanning calorimeter (DSC) and thermo-gravimetry analyzer (TG). The melting temperature (T m), glass transition temperature (T g), crystallization temperature (T c), degree of crystallinity (χc), and thermal stability of the PLA/OMMT nanocomposites have been studied. It was found that the thermal properties of PLA were greatly influenced by the addition of OMMT and EPMgMA.  相似文献   

15.
In this contribution, we reported an investigation of the morphologies, surface hydrophobicity, and shape memory properties of the organic–inorganic polyurethanes with double decker silsesquioxane (DDSQ) in the main chains. It was found that the organic–inorganic polyurethanes were microphase‐separated and that the POSS cages in the main chains were self‐organized into the spherical microdomains with the size of 10–50 nm in diameter. The introduction of POSS cages into the main chains resulted in the enhancement of glass transition temperatures (Tg's). In the meantime, the surface dewettability of the materials was significantly enhanced. X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) indicates the improvement of the surface hydrophobicity resulted from the enrichment of POSS at the surfaces of the polyurethanes. The mechanical analyses, such as dynamic mechanical analysis (DMA) and creep‐recovery analysis (CRA), indicate that the POSS microdomains dispersed in the polyurethanes behaved as the physical crosslinking sites and promoted the formation of the crosslinked networks. Owing to the introduction of DDSQ into the main chains, the organic–inorganic polyurethanes significantly displayed shape memory properties, in marked contrast to the unmodified and linear polyurethane. The shape memory behavior has been addressed on the formation of the strong physically crosslinked networks in the organic–inorganic polyurethanes. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 893–906  相似文献   

16.
Cyanate ester (PT‐15, Lonza Corp) composites containing the inorganic–organic hybrid polyhedral oligomeric silsesquioxane (POSS) octaaminophenyl(T8)POSS [ 1 ; (C6H4NH2)8(SiO1.5)8] were synthesized. These PT‐15/POSS‐ 1 composites (99/1, 97/3, and 95/5 w/w) were characterized by X‐ray diffraction (XRD), transmission election microscopy (TEM), dynamic mechanical thermal analysis, solvent extraction, and Fourier transform infrared. The glass‐transition temperatures (Tg's) of the composite with 1 wt % 1 increased sharply versus the neat PT‐15, but 3 and 5 wt % 1 in these cyanate ester composites depressed Tg. All the PT‐15/POSS composites exhibited higher storage modulus (E′) values (temperature > Tg) than the parent resin, but these values decreased from 1 to 5 wt % POSS. The loss factor peak intensities decreased and their widths broadened upon the incorporation of POSS. XRD, TEM, and IR data were all consistent with the molecular dispersion of 1 due to the chemical bonding of the octaamino POSS‐ 1 macromer into the continuous cyanate ester network phase. The amino groups of 1 reacted with cyanate ester functions at lower temperatures than those at which cyanate ester curing by cyclotrimerization occurred. In contrast to 1 , 3‐cyanopropylheptacyclopentyl(T8)POSS [ 2 ; (C5H9)7(SiO1.5)8CH2CH2CH2CN] had low solubility in PT‐15 and did not react with the resin below or at the cure temperature. Thus, phase‐separated aggregates of 2 were found in samples containing 1–10 wt % 2 . Nevertheless, the Tg and E′ values (temperature > 285 °C) of these composites increased regularly with an increase in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3887–3898, 2005  相似文献   

17.
Octaphenylsilsesquioxane (PH‐POSS) and octa(γ‐methacryloxypropyl)silsesquioxane (MA‐POSS) were successfully synthesized by hydrolytic condensation of phenyltrichlorosilane and γ‐methacryloxypropyltrimethoxysilane, and characterized by Fourier transform infrared (FT‐IR), 1H and 29Si nuclear magnetic resonance (NMR), and matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrum. Morphology, degradation behavior, thermal, and mechanical properties of hybrid composites were studied by transmission electron microscopy (TEM), polarized optical microscopy (POM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), surface contact angle (SCA), tensile, and impact testing. Domains of PH‐POSS and MA‐POSS dispersed in the matrix with a wide size distribution in a range of 0.1–0.5 µm, while PH‐POSS exhibited a preferential dispersion. Because of the possible homopolymerization of MA‐POSS during the melt blending, the glass transition temperature of polycarbonate (PC)/MA‐POSS composites remained nearly unchanged with respect to PC/PH‐POSS composites that showed a depression of Tg due to the plasticization effect. It is interesting to note that the incorporation of POSS retarded the degradation rates of PC composites and thus significantly improved the thermal stabilities. Si? O fractions left during POSS degradations were a key factor governing the formation of a gel network layer on the exterior surface. This layer possessed more compact structures, higher thermal stabilities, and some thermal insulation. In addition, percentage residues at 700°C (C700) significantly increased from 10.8% to 15.8–22.1% in air. Fracture stress of two composites showed a slight improvement, and the impact strength of them decreased monotonically with the increase of POSS loading. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization produced novel ABA triblock copolymers with associative urea sites within pendant groups in the external hard blocks. The ABA triblock copolymers served as models to study the influence of pendant hydrogen bonding on polymer physical properties and morphology. The triblock copolymers consisted of a soft central block of poly(di(ethylene glycol) methyl ether methacrylate) (polyDEGMEMA, 58 kg/mol) and hard copolymer external blocks of poly(2‐(3‐hexylureido)ethyl methacrylate‐co‐2‐(3‐phenylureido)ethyl methacrylate) (polyUrMA, 18‐116 kg/mol). Copolymerization of 2‐(3‐hexylureido)ethyl methacrylate (HUrMA) and 2‐(3‐phenylureido)ethyl methacrylate (PhUrMA) imparted tunable hard block Tg's from 69 to 134 °C. Tunable hard block Tg's afforded versatile thermomechanical properties for diverse applications. Dynamic mechanical analysis (DMA) of the triblock copolymers exhibited high modulus plateau regions (∼100 MPa) over a wide temperature range (−10 to 90 °C), which was indicative of microphase separation. Atomic force microscopy (AFM) confirmed surface microphase separation with various morphologies. Variable temperature FTIR (VT‐FTIR) revealed the presence of both monodentate and bidentate hydrogen bonding, and pendant hydrogen bonding remained as an ordered structure to higher than expected temperatures. This study presents a fundamental understanding of the influence of hydrogen bonding on polymer physical properties and reveals the response of pendant urea hydrogen bonding as a function of temperature as compared to main chain polyureas. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1844–1852  相似文献   

19.
Epoxy–clay nanocomposites have been prepared with an organically modified montmorillonite. The epoxy network was based on diglycidyl ether of bisphenol A (DGEBA) cured with diaminodiphenylmethane (DDM). The stoichiometry DGEBA–DDM was varied, the molar ratio of amine hydrogen/epoxy groups, r, ranged from 0.85 to 1.15. The influence of stoichiometry on curing and properties of the nanocomposites was studied using differential scanning calorimetry, dynamic mechanical thermal analysis and X-ray diffraction. All nanocomposites had intercalated clay structures. The clays accelerated the curing reaction whose rate was also increased when increasing r. The heat of reaction, −ΔH (J/g epoxy), increased as r increased, reaching a constant value for r ≥ 1. In the presence of clays −ΔH was lower than in the neat DGEBA–DDM. The glass transition temperature (T g) of the neat epoxy thermosets reached a maximum at r = 1; however, the nanocomposites showed the T g maximum at 0.9 < r < 1. The presence of clay lowered the T g for r > 0.94 and raised T g for r ≤ 0.85. The elastic modulus of neat epoxy thermosets reached a maximum in the rubber state and a minimum in the glassy state at r = 1. The nanocomposites showed similar behavior, but the maximum and the minimum values of the elastic modulus were reached at stoichiometry r < 1. The comparison of the properties of neat epoxy with those of the nanocomposites varying the stoichiometry indicates that the clay itself induces stoichiometric changes in the system.  相似文献   

20.
Two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides exhibit excellent thermal, mechanical, and electrical properties, and MXene displays good advantages in improving the mechanical properties of composites. In this study, the injection molding method is employed to introduce d-Ti3C2Tx MXene into the polyamide 66 matrix, yielding a d-Ti3C2Tx/PA66 nanocomposite. The tensile strength, flexural strength, Young's modulus, and hardness of d-Ti3C2Tx/PA66 nanocomposites are higher than that of pure PA66, owing to the high strength of the d-Ti3C2Tx nanosheets, good interfacial bonding, and stress transfer between the PA66 matrix and d-Ti3C2Tx nanofiller. TGA and DMA results revealed that the addition of d-Ti3C2Tx into the PA66 matrix improves the Tg, Es, creep resistance, and recovery properties, as well as the thermal stability of PA66 in an oxidizing atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号