首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The viability of static secondary ion mass spectrometry (S-SIMS) for selected applications of nanoscale analysis has been investigated, focusing on nanofibres produced by electrospinning (ES) as a test case. The samples consist of non-woven nanowebs of which the individual fibres have diameters in the range of 100 nm. Use of solutions with functionalised polymers or polar additives potentially allows the surface composition to be tailored as a function of the application. So far nanowebs are primarily characterised by morphological examination. This paper describes the first detailed characterisation of molecular composition at the surface of nanofibres electrospun from poly(epsilon-caprolactone) (PCL) solutions in acetone containing 0-15 mol% (relative to PCL) of cetyltrimethylammonium bromide (CTAB). Application of S-SIMS to nanowebs has allowed mass spectra to be recorded containing the major diagnostic ions of both components. Their relative intensities point to surface enrichment and depletion of the polar CTAB additive relative to the PCL matrix for samples electrospun from solution containing low and high CTAB concentrations, respectively.  相似文献   

2.
Electrospun zein membranes were prepared using DMF as solvent. By changing the solution concentration, the electrospinning voltage and the distance between the spinneret and collector, nanofibrous meshes without bead defects could be obtained. In order to improve the mechanical strength of the hydrated zein meshes, core-shell-structured nanofibrous membranes with PCL as the core material and zein forming the shell were prepared by coaxial electrospinning. The core-shell structure of the composite fibers was confirmed by SEM characterization of the fibers, either extracted with chloroform to remove the inner PCL, or elongated to expose their cross-section. The composition and average diameter of the composite fibers could be modulated by the feed rate of the inner PCL solution. It was found that the core-shell fibrous membranes have similar wettability to the electrospun zein mesh. The presence of PCL in the fibers could significantly improve the mechanical properties of the zein membrane.  相似文献   

3.
Thin PVA/nickel acetate composite fibres were prepared by using sol-gel processing and electrospinning technique. After calcination of the above precursor fibres, NiO nanofibres with a diameter of 50-150nm could be successfully obtained. The fibres were characterized by SEM,FT-IR, WAXD, respectively.  相似文献   

4.
In this work, we studied solvent-induced polymer degradation and its effect on the morphology of electrospun fibers. Nylon-6 in formic acid solvent was allowed to degrade by simply allowing it to stand for a long time, and nanofibrous mats were fabricated by taking a fraction of this solution at different time intervals via electrospinning under the same electrospinning conditions. FE-SEM images of the mats indicate that the nanofiber diameter gradually decreased with the standing time of solution, and large numbers of true nano fibers (<50 nm in diameter) were obtained. MALDI-TOF analysis revealed that the formation of low-molecular weight ions was caused by solvent degradation. FT-IR, DSC, XRD, and TGA analyses of electrospun mats showed that some physical properties, such as bond strength, crystallinity, and thermal stability also depended on solvent degradation. The obtained sub-nanofibrous mat has potential applications in different bioengineering fields.  相似文献   

5.
The effect of solvent permittivity on the fibre morphology of PCL electrospun membranes for tissue engineering applications is studied. Morphological results indicate that polar solvents with higher permittivity are able to promote the formation of sub-micrometric fibres, while apolar solvents yield microfibres with an average fibre diameter of 2.86 ± 0.31 μm. Polymer/solvent interactions and electrospinning process parameters influence the mechanism of fibre and bead formation. It is shown that the dielectric properties of solvents influence the fibre size scale and crystallinity and directly contribute to the biological response of stem cells. Solvent permittivity is a key factor in controlling the morphological and physical properties of electrospun fibre meshes.  相似文献   

6.
Thin PVA/manganese acetate composite fibres were prepared by using sol-gel processing and electrospinning technique.After calcinations of the above precursor fibres,Mn3O4 nanofibres with a diameter of 50-200 nm could be successfully obtained.The fibres were characterized by SEM,FT-IR,XRD.The results showed that the crystalline phase and morphology of nanofibres were largely influenced by the calcination temperature.  相似文献   

7.
Electrospinning is a well-known process for producing sub-micron scale polymer filaments through an electrostatic field. This paper presents a very simple “confined” air-driven electrospinning system, in which polyamide nanofibres are produced in the form of continuous crimped filaments. The reported system consists of a vertical cylinder with a weak tangential air-flow feeding from the top, placed between the capillary source electrode and the grounded target collector. The air-flow drives the polymer jet inside the electrostatic field, curls up the filament and reduces the deposition area on the collector surface. Numerical evaluations of both the electrostatic field and the air-flow path within the chamber are reported. The proposed configuration has been successfully tested electrospinning a solution of polyamide-6 in formic acid, varying the applied voltage and the distance between the electrodes. SEM observations of the electrospun fibres revealed that a large amount of crimped nanofibres was produced free from bead defects.  相似文献   

8.
Silica nanofibres have, due to their excellent properties, promising characteristics for multiple applications such as filtration, composites, catalysis, etc. Silica nanofibres can be obtained by combining electrospinning and the sol–gel process. To produce silica nanofibres most of the time organic solutions are applied containing a carrying polymer, which is afterwards removed by a thermal treatment to form pure ceramic nanofibres. Although electrospinning of the pure silica precursors without carrying polymer is preferred, the parameters influencing the stability of the electrospinning process are however largely unknown. In addition, this knowledge is essential for potential upscaling of the process. In this study, the optimum viscosity to electrospin in a stable manner is determined and the way to obtain this viscosity is evaluated. Sols with a viscosity between 120 and 200 mPa.s could be electrospun in a stable way, resulting in uniform and beadless nanofibres. Furthermore, this viscosity region corresponded with nanofibres having the lowest mean nanofibre diameters. Electrospinning with diluted sols was possible as well, but electrospinning of the fresh sols was more stable. These results illustrate the importance of the viscosity and degree of crosslinking of the sol for the stable electrospinning of silica nanofibres and demonstrate that upscaling of the electrospinning process of silica nanofibres is feasible.  相似文献   

9.
Conductive titania nanofibres supporting Pt nanoparticles were synthesised in a one-pot method based on the electrospinning technique. The dimensions of both the oxide fibres and platinum particles were tuneable, leading to versatile nanomaterials with possible applications as electrodes for energy conversion devices.  相似文献   

10.
Thin-layer chromatography coupled with flame ionization detection was used to develop a method to separate and to determine simultaneously three polyether carboxylic ionophore antibiotics (abierixin, nigericin and grisorixin) produced by Streptomyces hygroscopicus NRRL B 1865. Various proportions of chloroform, methanol and formic acid (or acetic acid as a substitute for formic acid) were used in the developing solvent to determine changes in RF values of the antibiotics and to allow conditions for maximum resolution to be obtained. Development on Chromarods SII with chloroform-methanol-formic acid (97:4:0.6, v/v/v) gave satisfactory and reliable separations of the three polyether antibiotics. Under these conditions, the internal standard methyl desoxycholate was found to be suitable for their simultaneous determination in the lipid extracts of Streptomyces hygroscopicus NRRL B 1865.  相似文献   

11.
静电纺丝法制备NiO纳米纤维及其表征   总被引:8,自引:0,他引:8  
纳米级NiO因具有优良的催化和热敏等性能而被广泛用于催化剂[1]、电池电极[2,3]、光电转化材料[4~6]、电化学电容器[7~8]等诸多方面.迄今,已成功地制备出N iO的纳米颗粒[9]、纳米线[10]及纳米薄膜[11],但是对于具有准一维结构的NiO纳米纤维的制备及性能研究尚未见报道.  相似文献   

12.
The cloud points for the co-nonsolvent systems (i) pyridine (PY) + formic acid (FA) towards poly(?-caprolactone) (PCL) or poly(methyl methacrylate) (PMMA) and (ii) pyridine + acetic acid (AA) towards PCL have been experimentally determined as a function of solvent composition at fixed polymer concentrations. Heats of mixing for the (FA + PY) system have also been measured. The single liquid approximation model correctly predicts for the (PY + FA) system the solvent composition at which the solvent power of the mixture is the poorest, provided it is recognized that the solvent system is comprised of pyridinium formate (PYFA) as one component and either PY or FA (depending on which is present in excess over 1:1 mole ratio) as the other. With the other co-nonsolvent system, the prediction is not as good. A possible reason for the discrepancy has been given.  相似文献   

13.
There is remarkable interest in the fabrication of polymeric composite nano/micro-fibers by electrospinning for many applications ranging from bioengineering to water/air filtration. In almost all of these applications, the mechanical properties of both the polymer fibers and their assemblies, are significant. In this study, unmodified, 3-Glycidoxypropyltrimethoxysilane (GPTMS) or 3-Aminopropyltriethoxysilane (APTES) modified halloysite clay nanotube (HNT) reinforced polycaprolactone (PCL) nanofibers were successfully synthesized via the electrospinning. The morphology and mechanical features of the obtained electrospun fibers were investigated by atomic force microscopy (AFM) and AFM-based nanoindentation for single fibers in nanoscale, respectively. Besides, scanning electron microscopy and tensile strength tests were used to investigate whole fibrous structures in microscale. The AFMresults, accompanied by SEM and tensile strength, support the conclusion that silane-modification affected positively the morphology and mechanical characteristics of electrospun PCL nanofibers. Therefore, it was concluded that the morphological and mechanical features from the single fibers in the nanofiber mats were related to the whole fibrous structure.  相似文献   

14.
Poly(caprolactone) (PCL) is one of biodegradable and biocompatible polymers, which have received significant attention because they are environmentally friendly and are extensively used in biomedical applications. Electrospinning was a straightforward method to produce nanofibers from polymer solutions in a wide submicron range around 100 nm. However, no clear standard had been established for judging whether a solvent of high solubility for a polymer would produce a solution good for electrospinning. Considering the above-mentioned cause, we explored the effect of solvent on fibrous morphology, FT–IR spectra and 1H NMR spectra, viscosity and shearing strength, differential scanning calorimetry (DSC) of PCL electrospun nonwoven membranes in this article. When NMP and AC were used as the solvent for PCL electrospinning, all of them were composed of smooth and nanosized fibers with similar fiber surface morphologies. Meanwhile, when DCM and CF were used as solvent, there were lots of holes in fibers due to high evaporation. The electrospinnability was good when CA was chosen as solvent due to its lowest viscosity.  相似文献   

15.
Spectral studies of SnO2 nanofibres prepared by electrospinning method   总被引:3,自引:0,他引:3  
Tin oxide nanofibres with 100-150 nm diameter has been prepared, for the first time by calcination of poly(vinyl acetate) (PVAc)/SnO2 composite fibres prepared by electrospinning method as precursor. Scanning electron microscopic images revealed cylindrical morphology of the fibres after calcination at 600 degrees C. Both, X-ray diffraction (XRD) and Raman spectral data confirmed the presence of phase pure tetragonal rutile tin oxide after calcination process. Room temperature photoluminescence (PL) spectra of tin oxide nanofibres under excitation at 325 nm wavelength show a strong green emission at 525 nm with a band gap of 2.41 eV. FT-IR spectra confirmed the formation of pure tin oxide after calcination at 600 degrees C and complete removal of PVAc during calcination. UV-vis spectrum of the fibres showed absorption at 315 nm due to the direct electron transfer in tin oxide.  相似文献   

16.
The effect of electrospinning process parameters (solution flow rate, applied voltage, spinning distance) on the size and surface morphology of porous electrospun poly(ε‐caprolactone) was investigated in this study. Response surface methodology was implemented for the design and conduction of electrospinning experiments. The feed solution was a 12.5% w/v poly(ε‐caprolactone) (PCL) solution in a binary solvent mixture of 90%v/v chloroform/dimethyl sulfoxide. Spinning distance of 10–25 cm, applied voltage of 10–25 kV and feed flow rate of 0.5–5 mL/h were the range of limiting values of the independent variables used for the development of a central composite design. Second‐order polynomial equations, correlating electrospinning process parameters to relative pore coverage, and fiber average diameter were developed and validated. An increase in any of the investigated parameters (solution flow rate, applied voltage, spinning distance) resulted in the increase of both, pore formation on electrospun fibers, and produced fiber average diameter. Under the experimental conditions investigated, the relative pore surface coverage was 15.8–31.9% and the average fiber diameter was in the range of 1.6–3.3 μm. Applied voltage was proven to be the parameter with the strongest impact on both, fiber diameter and surface morphology. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1878–1888  相似文献   

17.
Academic and industrial research on nanofibres is an area of increasing global interest, as seen in the continuously multiplying number of research papers and patents and the broadening range of chemical, medical, electrical and environmental applications. This in turn expands the size of the market opportunity and is reflected in the significant rise of entrepreneurial activities and investments in the field. Electrospinning is probably the most researched top-down method to form nanofibres from a remarkable range of organic and inorganic materials. It is well known and discussed in many comprehensive studies, so why this review? As we read about yet another "novel" method producing multifunctional nanomaterials in grams or milligrams in the laboratory, there is hardly any research addressing how these methods can be safely, consistently and cost-effectively up-scaled. Despite two decades of governmental and private investment, the productivity of nanofibre forming methods is still struggling to meet the increasing demand. This hinders the further integration of nanofibres into practical large-scale applications and limits current uses to niche-markets. Looking into history, this large gap between supply and demand of synthetic fibres was seen and addressed in conventional textile production a century ago. The remarkable achievement was accomplished via extensive collaborative research between academia and industry, applying ingenious solutions and technological convergence from polymer chemistry, physical chemistry, materials science and engineering disciplines. Looking into the present, current advances in electrospinning and nanofibre production are showing similar interdisciplinary technological convergence, and knowledge of industrial textile processing is being combined with new developments in nanofibre forming methods. Moreover, many important parameters in electrospinning and nanofibre spinning methods overlap parameters extensively studied in industrial fibre processing. Thus, this review combines interdisciplinary knowledge from the academia and industry to facilitate technological convergence and offers insight for upscaling electrospinning and nanofibre production. It will examine advances in electrospinning within a framework of large-scale fibre production as well as alternative nanofibre forming methods, providing a comprehensive comparison of conventional and contemporary fibre forming technologies. This study intends to stimulate interest in addressing the issue of scale-up alongside novel developments and applications in nanofibre research.  相似文献   

18.
Abstract

The nanoscale dimension of electrospun polymeric nanofibres produced by electrospinning are highly captivating, yet facing limitation of resisting external forces due to the weak tensile properties. Carbon nanotubes providing tremendous toughness due to extraordinary strong sp2 bonding network of carbon atoms in honeycomb lattice structure, augmented the physical resistant strength and is easily recover to its original state after load is removed. This study reports the performance of multi-walled carbon nanotubes (MWCNTs) as filler in the electrospinning of poly (L-lactide)-co-ε-caprolactone) (PLCL) composite nanofibres. Voltage of 10?kV is applied to the spinning solution mixture of 11?wt% (w/v) PLCL and MWCNTs, yielded nanofibres having diameters less than 400?nm. Results obtained showed the formation of composite nanofibres with tailored tensile behavior by modifying the content of MWCNTs. The addition of MWCNTs improved the tensile properties of resultant composite nanofibres, signified by tensile strength of 5.82 to 15.95?MPa, which were obtained using 0.1 to 1.0?wt% of MWCNTs. The structural integrity of nanofibres mats were retained in phosphate buffer saline (PBS) medium. Scanning Electron Microscopy (SEM) micrographs revealed the minimal of fiber deformation over 30?days of incubation and are closely identical to the initial diameter of as-spun fiber.  相似文献   

19.
Novel drug-loaded cellulose acetate (CA) nanofibres were prepared by a modified coaxial electrospinning process, after which their zero-order drug release profiles were determined. Using 2 % (w/v) unspinnable CA solution as a sheath fluid, coaxial electrospinning can be conducted smoothly to generate ketoprofen (KET)-loaded CA nanofibres coated with a thin layer of blank CA. Scanning electron microscopy images demonstrated that nanofibres obtained from the modified coaxial process have a smaller average diameter, a narrower size distribution, more uniform structures, and smoother surface morphologies than those generated from single-fluid electrospinning. Transmission electron microscopy observations demonstrated that the nanofibres have a thin coating layer of blank CA on their surface with a thickness of ca. 15 nm. X-ray diffraction and differential scanning calorimetry verified that KET molecules in all of the nanofibres presented an amorphous state. Fourier transform infrared spectra demonstrated that CA has good compatibility with KET, which is brought about by hydrogen bonding. In vitro dissolution tests showed that the nanofibres coated with blank CA have no initial burst release effects and can provide a zero-order drug release profile over 96 h via a diffusion mechanism. The modified coaxial electrospinning method can provide new approaches in developing cellulose-based nano products with definite structural characteristics and improved functional performance.  相似文献   

20.
Electrospun fibres are very rarely used as reinforcing agents in polymer-based composites. A fabrication approach is presented that allows to easily prepare composites based on polycaprolactone (PCL) filled with nylon 6 electrospun fibres by compression moulding. At very low filler contents (3%), the obtained composites exhibited improved stiffness with a simultaneous increase in ductility, differently from what is usually found in PCL nanocomposites with a variety of fillers, in which increases in modulus happen at the expense of elongation at break. The presence of fibres with a very small diameter, typical of the products of electrospinning, favoured a good interfacial adhesion between matrix and filler. Being of a similar order of magnitude than polymer lamellae, electrospun fibres can be used to shape the morphology of lamellar stacks, and therefore the final properties of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号