首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
对苯乙烯基形状记忆聚合物进行了拉伸实验研究,测定了该材料在25℃、30℃、40℃和50℃时的弹性模量和屈服极限.根据实验结果,建立了苯乙烯基形状记忆聚合物的材料参数方程,描述了苯乙烯基形状记忆聚合物在玻璃体转化过程中,材料参数和温度的关系.在假设形状记忆聚合物为各向同性材料的基础上,将Tobushi等建立的热力学本构方程从一维扩展到三维.基于有限元分析软件ABAQUS的二次开发功能,针对上述本构方程和材料参数方程,编写了可供ABAQUS调用的UMAT函数,并对苯乙烯基形状记忆聚合物实现形状记忆效应的高温变形、应力冻结和形状恢复等热力学过程,进行了有限元数值模拟分析.  相似文献   

2.
Styrene-based shape memory polymer (SMP) tubes were fabricated and their basic mechanical properties in different deformation states were investigated. The tensile, compression, bending and twisting shape memory properties of the tubes were analyzed and discussed, and the results indicated that SMP tubes exhibit good shape fixity ratio and shape recovery ratio. In addition, the shape recovery behavior was investigated at different heating rates. These experimental results will provide guidance for future applications of SMP tube structures.  相似文献   

3.
液化MDI/PHMA体系形状记忆聚氨酯结构与性能的研究   总被引:1,自引:0,他引:1  
用聚已二酸已二酯(PHMA)为软段,液化MDI和BDO为硬段,采用两步溶液法合成了具有形状记忆功能的多嵌段聚氨酯,利用DSC,WAXD等测试手段分析了该体系的形态结构,同时讨论了该体系的形状记忆行为、拉伸力学性能及动态力学性能.结果发现,该体系SMPU的硬段以无定形存在,软段具有很好的结晶性能;具有很好的形状记忆性能,形状固定率可达100%,形状回复率在97%以上,回复温度在35~45℃;同时它兼有较高的拉伸强度(约为28~50 MPa)和断裂伸长率(约为900%~1400%);动态力学性能卓越,其室温模量可达279.8 MPa,软段熔融前后模量比可达140.  相似文献   

4.
A novel redox‐induced shape‐memory polymer (SMP) is prepared by crosslinking β‐cyclodextrin modified chitosan (β‐CD‐CS) and ferrocene modified branched ethylene imine polymer (Fc‐PEI). The resulting β‐CD‐CS/Fc‐PEI contains two crosslinks: reversible redox‐sensitive β‐CD‐Fc inclusion complexes serving as reversible phases, and covalent crosslinks serving as fixing phases. It is shown that this material can be processed into temporary shapes as needed in the reduced state and recovers its initial shape after oxidation. The recovery ratio and the fixity ratio are both above 70%. Furthermore, after entrapping glucose oxidase (GOD) in the system, the material shows a shape memory effect in response to glucose. The recovery ratio and the fixity ratio are also above 70%.

  相似文献   


5.
A facile method to prepare shape memory polymers crosslinked by SiO2 is described. A series of biodegradable shape memory networks were obtained through thiol‐ene reaction triggered by UV irradiation between surface‐thiol‐modified SiO2 nanoparticles and end‐acrylate poly (ε‐caprolactone) (PCL). The highly selective thiol‐ene reaction ensured a uniform distribution of PCL chains between crosslinkers, contributing well‐defined network architecture with enhanced mechanical and shape‐memory properties. Thiol‐functionalized silica nanoparticle was characterized by using FTIR and XPS analysis, and 1H NMR spectra was used to confirm the successful modification of terminal hydroxyl group of PCL diol. Surface‐modified silica particles were found well dispersible in acrylate‐capped PCL supported by SEM. Thermal and crystalline behaviors of the obtained polymers were analyzed by DSC and XRD, and DMA measurement proved good mechanical property. The shape memory behavior and tensile strength was somewhat tunable by the length of PCL. Acceptably, sample SiO2‐SMP2k presented 99% recovery ratio and 97% shape fixity, and its relatively high tensile strength showed an attractive potential for biomedical application. Finally, a possible molecular mechanism accounting for the shape memory property was illustrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 692–701  相似文献   

6.
Thermoplastic polyurethanes (TPU) are a popular family of shape memory polymers (SMP) due to their excellent abrasion & weather resistant, and mechanical strength. However, conventional processing operations or their combination with other polymers by adhesion or blending can affect their unique shape memory behavior. Currently, there are no effective methods to study and quantify the shape memory behavior of SMP based polymer laminates as they would respond to deep drawing operations. In this paper, a new method was introduced to effectively quantify the recovery behavior of TPU based polymer laminates undergoing simultaneous stretching and bending operations at different processing temperatures. The results presented show the value of developing a shape recovery characterization method that resembles the stresses of thermoforming to properly assess formability of shape memory polymers used in laminate constructions.  相似文献   

7.
In recent years, shape memory polyurethane (SMPU) as a smart material has been used in various applications owing to its desirable shape memory effect and biocompatibility. In this study, unidirectional SMPU nanofibers are innovated by electrospinning to clarify the mechanical and shape memory properties with nanofiber directions. The results showed that when the nanofiber alignment degree is 0° (parallel to the tensile direction), the aligned SMPU nanofibers achieved the obvious improvement of tensile strength (increased to 135%) and elastic modulus (increased to 313%), compared with the random SMPU nanofiber. Moreover, the developed aligned nanofibers exhibited good ability against stress relaxation and creep under constant strain or constant stress conditions in cyclic loading. The aligned SMPU nanofibers with a 0° alignment degree exhibited excellent shape memory properties with shape recovery rates larger than 93% and shape fixity rates larger than 90%, and a dramatic increase of shape recovery stress.  相似文献   

8.
A novel pH sensitive shape‐memory polymer (SMP) is prepared by cross‐linking the β‐cyclodextrin modified alginate (β‐CD‐Alg) and diethylenetriamine modified alginate (DETA‐Alg): The pH reversible β‐CD‐DETA inclusion complexes serve as a reversible phase, and the cross‐linked alginate chains serve as a fixing phase. It is shown that this material can be processed into temporary shape as we needs at pH 11.5 and recover to its initial shape at pH 7. The recovery ratio and the fixity ratio were 95.7 ± 0.9% and 94.8 ± 1.1%, respectively. Furthermore, this material showed good degradability and biocompatibility. Because the shape transition pH value is quite close to that of our body fluid and this pH triggered shape‐memory effect is convenient and safe to use, this material has a high potential for medical application.  相似文献   

9.
《先进技术聚合物》2018,29(1):190-197
This paper proposes a new technique for the preparation of foamed Eucommia ulmoides gum (EUG)/high‐density polyethylene (HDPE) shape memory composites and establishes the relationship between structures and properties in foamed shape memory composites. Eucommia ulmoides gum/HDPE shape memory composites are designed to memorize 2 temporary shapes by exploiting the different melting points of the 2 phases; the triple shape memory effect in the composites is investigated via mechanical measurements, thermal analysis, and shape memory behavior analysis. The results show that HDPE phase enables the composites to effectively memorize the first temporary shape and EUG phase contributes the second temporary shape. When the ratios of EUG and HDPE were 80/20 and 70/ 30, the composite exhibited satisfactory shape memory behavior with favorable shape fixity ratio and shape recovery ratio, in addition to excellent mechanical properties (tensile strength of 15 MPa, tear strength above 51 KN/m, and foam porosity of about 11%).  相似文献   

10.
Shape memory polymer (SMP) such as cross-linked low-density polyethylene (XLDPE), can return from its temporary shape to the original (permanent) shape upon heating. SMP in comparison with shape memory alloy (SMA) and shape memory ceramic (SMC) has lower stiffness, so generates lower recovery force when it is being used as an actuator. Also, when SMP is reinforced with traditional micro-fillers, it often loses its shape memory effect due to the high weight fraction of filler (20-30%). To overcome these disadvantages, nanoclays can be used. The smart resultant nanocomposite, even in small clay loading level (0-10 wt.%), shows higher modulus, strength, and the other physical properties such as higher recovery force, required to act as an actuator.In this work, the effect of modified montmorillonite on mechanical and shape memory properties as well as the force generation of a shape memory cross-linked low density polyethylene were investigated.The results show that the modulus of elasticity, the recovery temperature, the recovery force and force recovery rate increase with increasing organoclay in nanocomposites, but final recovery strain decreases slightly.  相似文献   

11.
In this paper, a poly(ε‐caprolactone) (PCL)‐based shape memory polyurethane fiber was prepared by melt spinning. The shape memory switching temperature was the melting transition temperature of the soft segment phase mainly composed of PCL at 47°C. The mechanical properties especially shape memory effect were explicitly characterized by thermomechanical cyclic tensile testing. The results suggest that the prepared fiber has shape memory effects. The prepared 40 denier shape memory fiber had a tenacity of about 1.0 cN/dtex, and strain at break 562–660%. The shape fixity ratio reached 84% and the recovery ratio reached 95% under drawing at high temperature and thermal recovery testing.1 Finally, the fiber thermal/mechanical properties were measured using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
形状记忆高分子材料   总被引:19,自引:0,他引:19  
作为一种新型的功能材料,形状记忆高分子不仅具有形变量大、赋形容易、形状恢复温度便于调整、加工方便的优点,而且种类丰富、质轻价廉.按形状记忆的方式,它可分为热致感应型、光致感应型和化学物质感应型等,能满足不同的应用需求.  相似文献   

13.
In this work, a bilayer shape memory polymer (SMP) composite plate with two-way shape memory behavior is simulated, in which two types of styrene-based SMPs with well-separated glass transition temperatures are assembled in parallel. The finite element (FE) software ABAQUS is selected to exhibit the two-way shape memory effect during the shape recovery step and the Generalized Maxwell Model with the WLF equation is applied to characterize the temperature-dependent properties of the SMP bilayer plates. The effect factors of axial predeformation, thermal expansion coefficient and plate thickness are all considered for the two-way shape memory behavior of the styrene-based bilayer SMP plate. After that, a smart gripper composed of four SMP composite plates is proposed to realize grabbing and releasing functions for one-step and staged heating recovery. The FE results provide some necessary theoretical guidelines for future soft smart structural designs and optimization.  相似文献   

14.
It is known that particular types of semi‐crystalline/elastomer polymer blends exhibit shape memory effects (SME) due to the dispersion of two immiscible phases. In this study, the crystal structure of polylactic acid (PLA)/ thermoplastic polyurethane (TPU) based shape memory polymer (SMP) is altered by incorporating small amounts of montmorillonite (MMT) nanoclay. The results indicate the incorporation of MMT can improve the compatibility of the two different polymers. Moreover, the presence of MMT affects the total crystallinity of the SMP and improves mechanical properties. Lastly, uniaxial stretching deformation can be applied to the SMP at room temperature conditions while maintaining its shape memory properties. With 1 wt % MMT particles, the recovery ratio (Rr) was nearly 95%, which indicated a strong recovery effect. The shape‐fixing ratio (Rf) remained above 95% for all composites due to plastic deformation applied at room temperature. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1197–1206  相似文献   

15.
A series of shape‐memory epoxy thermosets were synthesized by crosslinking diglycidyl ether of bisphenol A with mixtures of commercially available hyperbranched poly(ethyleneimine) and polyetheramine. Thermal, mechanical and shape‐memory properties were studied and the effect on them of the content and structure of the hyperbranched polymer was discussed. Measurements showed that the glass transition temperature can be tailored from 60 °C to 117 °C depending on the hyperbranched polymer content, and all formulations showed an appropriate glassy/rubbery storage modulus ratio. Shape‐memory programming was carried out at TgE′ given the excellent mechanical properties of the materials, with maximum stress and failure strain up to 15 MPa and 60%, respectively. The resulting shape‐memory behavior was excellent, with maximum shape recovery and shape fixity of 98% as well as a fast shape‐recovery rate of 22%/min. The results show that hyperbranched poly(ethyleneimine) as a crosslinking agent can be used to enhance mechanical and shape‐memory properties with different effects depending on the crosslinking density. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 924–933  相似文献   

16.
In this article, we show that given a thermoresponsive shape memory polymer, it is possible to alter a number of its properties, such as the recovery temperature, shape fixity ratio, maximum recovery stress, and final recovery stress (and even a right combination of some of them, e.g., the maximum recovery stress and final recovery stress), simply by means of selecting the programming temperature to achieve optimized performance. Some concerns for the implementation in real engineering practice are also discussed. Although the focus is on the case of a fixed maximum strain in programming, alternative programming approaches can be investigated in a similar way for optimized performance as well. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
以端羟基L-丙交酯/乙交酯共聚物(PLLG-diol)和端羟基ε-己内酯/乙交酯共聚物(PCG-diol)为硬段和软段,通过与二异氰酸酯反应制得了软、硬分子量和组成均可调的多嵌段聚(酯-氨酯),表征了它们的形状记忆行为.多嵌段聚(酯-氨酯)具有良好的形状记忆性质,应变固定率达98%~99.5%,应变恢复率达93%~98.5%;通过转变温度的调节,可使多嵌段聚(酯-氨酯)在37℃体温下不发生形状变化,而在稍高于体温的温度(40~50℃)下恢复原始形状,其形状恢复速率可通过温度和升温速率来调节.  相似文献   

18.
Shape memory polymers (SMPs) have received great attention and scientific interest in widespread technological development during last few decades. Besides the development of novel SMPs, various techniques have been practiced for characterization of shape memory effect (SME) of SMPs. In this study, the shape memory effect and recovery stress property of the carbon nanotube (CNT)/waterborne epoxy (WEP) nanocomposites below and above the glass transition temperature (Tg) of the nanocomposites and under isostrain and isostress were systematically investigated via thermal mechanical analysis (TMA), respectively. The experimental results showed that the nanocomposites exhibit excellent shape memory effect. The shape memory fixity and recovery ratios were approximately 100% even below glass transition temperature (Tg). A remarkable point is that the strain of the nanocomposites suddenly increased with the temperature decreasing in a certain period of the heating-cooling cycles under isostress condition and the strain increment increased with temperature in general. Especially at low temperature, the recovery stress was very sensitive to temperature under isostrain condition of ±0.25 °C temperature with differential of 25.5 °C developed pressure difference of 0.20 MPa. Moreover, TMA is a practical method for quantifying the SME and recovery stress properties of SMPs and their composites.  相似文献   

19.
A series of shape memory polyurethanes were synthesized from poly(tetramethylene glycol), 4,4‐methylene diphenyl diisocyanate, and 1,3‐butanediol. The prepolymers with different molecular weights (Mc) were capped with 2‐hydroxyl ethylacrylate or 3‐aminopropyltriethoxysilane (APTES) and crosslinked by UV curing or a sol–gel reaction. Variations of the crosslinker functionality (f), subchain density (N), and hard segment content (HSC) produced systematic variations of the glass transition temperature (6–45 °C), accompanied by changes in the mechanical, dynamic mechanical and shape memory properties. More than 95% of shape fixity and 98% of shape recovery up to the fourth cycles were obtained with APTES crosslinked 3000Mc with 30% of HSC. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1473–1479  相似文献   

20.
This article investigates shape memory polymers (SMPs) fabricated by swelling sulfur crosslinked natural rubber with four different molten fatty acids: lauric, myristic, palmitic, and stearic acid. As inexpensive additives, they allow commodity natural rubber to be directly converted to SMPs. The shape memory properties are investigated as a function of wt% fatty acid, the choice of fatty acid, and the applied load during shape memory programming. It is found that increasing the wt% acid improves the shape fixity up to ca. 97% at ≥50 wt% fatty acid, at which point the recovery starts to decline with increasing wt% acid due to network failure during shape programming. The shape fixity is found to depend on the yield stress and modulus of the fatty acid network, which both increase with increasing wt% acid. The choice of fatty acid also varies the trigger temperature for shape memory, which scales with the melting point of the fatty acid. Serendipitously, it is found that alignment of the fatty acid crystals during programming produces stiffer networks whose modulus increase with applied load, which counterbalances the higher elastic energy stored in the rubber network to produce lower sensitivity of the shape fixity to the applied load. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 673–687  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号