首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coatings mainly composed of nanostructured TiO2 were deposited on Ti6Al4V alloy by microarc oxidation (MAO). The duplex coatings of microarc oxidation combined with spraying graphite process were fabricated for the antifriction purpose. The tribological properties of unpolished, polished and duplex coating against steel under dry friction conditions were examined. It is found that antifriction property of the polished microarc oxidation coating is superior to that of the unpolished one. The improvement is attributed to the low surface roughness and the nanocrystalline structure of coatings. The duplex coating exhibits best antifriction property, registering a lower and steady friction coefficient of ≈0.12 than that of the polished microarc oxidation coating sliding in the similar condition. The good tribological property is attributed to the specially designed duplex structure, the coating adhering strongly to the substrate and serving as the load-supporting underlayer and the graphite layer on top of it working as solid lubricant.  相似文献   

2.
The structural state and tribological properties of gradient and composite antifriction coatings produced by pulsed laser codeposition from MoSe2(Ni) and graphite targets are studied. The coatings are deposited onto steel substrates in vacuum and an inert gas, and an antidrop shield is used to prevent the deposition of micron-size particles from a laser jet onto the coating. The deposition of a laser jet from the graphite target and the application of a negative potential to the substrate ensure additional high-energy atom bombardment of growing coatings. Comparative tribological tests performed at a relative air humidity of ∼50% demonstrate that the “drop-free” deposition of a laser-induced atomic flux in the shield shadow significantly improves the antifriction properties of MoSe x coatings, decreasing the friction coefficient from 0.07 to 0.04. The best tribological properties, which combine a low friction coefficient and high wear resistance, are detected in drop-free MoSe x coatings additionally alloyed with carbon (up to ∼55 at %) and subjected to effective bombardment by high-energy atoms during growth. Under these conditions, a dense nanocomposite structure containing the self-lubricating MoSe2 phase and an amorphous carbon phase with a rather high concentration of diamond bonds forms.  相似文献   

3.
A high wear-resistant gradient coating made of Ni/Co-based alloys on the surface of a Cu alloy substrate was synthesized using a YAG laser induced in situ reaction method. The coating consists of three layers: the first is a Ni-based alloy layer, the second and third are Co-based alloy layers. The microhardness increases gradually from 98 HV in the Cu alloy substrate to the highest level of 876 HV in the third layer. The main phase of the Co-based alloy layer is CoCr2(Ni,O)4, coexisting with the Fe13Mo2B5, Cr(Co(Mo, and FeCr0.29Ni0.16C0.06 phases. Wear tests indicate that the gradient coating has good bond strength and wear properties with a wear coefficient of 0.31 (0.50 for the Cu alloy substrate). Also, the wear loss of the coating is only 0.01 g after it has been abraded for 60 min, which is only one fifth of that of the Cu alloy of the crystallizer. Wear tests of the gradient coating reveal good adhesive friction and wear properties when sliding against steel under dry conditions. This novel technique may have good application to make an advanced coating on the surface of the Cu alloy crystallizer in a continuous casting process.  相似文献   

4.
Titanium carbide nitride (TiCN) reinforced Ti coating was fabricated on the surface of Ti–6Al–4V alloy by laser cladding method. Microstructure and wear properties at the surface of the coating in atmosphere were investigated. Three zones can be distinguished of the coating: the clad zone (CZ), the heat affected zone (HAZ) and the substrate. The clad zone is composed of TiCN dendrites, TiO2 and Ti. A metallurgical bonding between the coating and the substrate was obtained. The microhardness and wear resistance of the TiCN/Ti coating are significantly improved. The average hardness of the coating is about 3 to 6 times of that of the substrate. The friction coefficients of the substrate and the coating are 0.48 and 0.34 respectively. The friction coefficient of the Ti–6Al–4V substrate was insensitive to the normal load, while that of the cladded TiCN/Ti coating was very sensitive to the normal load. The wear mass losses of the cladded samples are much lower than that of the substrate whatever the normal load is.  相似文献   

5.
TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.  相似文献   

6.
J.L. Mo 《Applied Surface Science》2009,255(17):7627-7634
CrN coatings were prepared by filtered cathodic vacuum arc (FCVA) technique. The influence of the deposition parameters (nitrogen partial pressure PN2, substrate bias voltage Vs and preheating of the substrate) on the structural, mechanical and tribological properties of the FCVA CrN coatings was investigated. Further, the FCVA CrN coating was compared in dry reciprocating sliding with commercial multi-arc ion plating (MAIP) CrN coating as to friction and wear properties. Profilometer, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) were used to evaluate the wear scars and the wear mechanisms were discussed. The results showed that the structural, mechanical and tribological properties of the FCVA CrN coatings were significantly dependent on the deposition parameters. The FCVA CrN coating deposited with PN2 of 0.1 Pa, Vs of −100 V and without preheating exhibited the optimal mechanical and tribological properties. The FCVA CrN coating exhibited much better anti-abrasive and anti-spalling properties than the MAIP CrN coating, which was resulted from significant reduction of macroparticles and pitting defects by the FCVA technique. The MAIP CrN coating suffered severe concentrated wear by a combination wear mechanisms of delamination, abrasive and oxidative wear when high normal load was applied, while for the FCVA CrN coating the wear mechanisms were ultra-mild abrasive and oxidative wear.  相似文献   

7.
为获得二硫化钼(MoS2)涂层在聚变堆部件表面使用条件下的摩擦磨损特性,采用单极性脉冲磁控溅射技术在铁铬镍基高温合金A286上制备了厚度为2μm的MoS2涂层,并针对MoS2涂层在不同载荷及转速条件下的摩擦学性能展开了研究。经验证,沉积的MoS2涂层结晶度较好,沿(002)面择优取向;随测试转速的增加,摩擦系数逐渐减小,在转速为50r·min-1时,摩擦系数平均值为0.0722;在转速固定时,摩擦系数随测试载荷的增加先减小后增大,当载荷为7N时达到最小平均值0.0763。  相似文献   

8.
Ni-SrSO4 composite coatings were electrodeposited on superalloy Inconel 718 from a Watts electrolyte containing a SrSO4 suspension. Ni-SrSO4 coatings were investigated by scanning electron microscope, microhardness tester, and friction and wear tester in sliding against a bearing steel ball under unlubricated condition. The incorporation of SrSO4 into Ni matrix increases the microhardness of electrodeposited coatings. Ni-SrSO4 composite coating exhibits a distinctly low friction coefficient and a small wear rate as contrasted with pure Ni coating and the substrate. The effect of SrSO4 particles on microstructure and tribological properties of Ni-SrSO4 composite coatings is discussed.  相似文献   

9.
石墨烯薄膜作为一种二维材料,是提高微/纳机电系统(MEMS/NEMS)摩擦力学性能的优异润滑剂.为了探究基底材料和石墨烯层数对其减磨性能的影响,本文通过在不同基底制备了不同层数的石墨烯涂层,利用原子力显微镜(AFM)实验和分子动力学(MD)仿真结合的方法,研究了石墨烯层数对减磨效应的影响.并且通过建立不同层数石墨烯涂层的摩擦性能分析模型,探究出石墨烯层间滑移是产生减磨的主要因素.结果表明:在不同载荷下,石墨烯涂层对硅基底和铜基底均有优异的减磨效果,摩擦力随着石墨烯层数的增加逐渐降低,当石墨烯层数大于10层时,达到最优99.3%的减磨效果.通过仿真分析发现,随着层数增加,石墨烯与基底的干摩擦转变为石墨烯的层间摩擦,并产生层间剪切滑移,石墨烯层间滑移是导致多层石墨烯优异减磨性能的主要因素.  相似文献   

10.
Using the supersonic plasma spraying (SPS) technique, a composite ceramic-Ni60 coating was prepared on a 45# steel substrate. The particle morphology, coating morphology, and phase structure of the coating were analyzed via scanning electron microscopy and X-ray diffraction. Moreover, the tribological properties of the coating were determined via friction and wear experiments. The results revealed that: the crystal structure of the SPS-produced coating is composed of six phase-structure types, and the coating structure was dense with low porosity. During the wear test (rotation speed of ball: 300 rpm, load: 50 N), the friction coefficient decreased by 32.75%, and the coating underwent abrasive wear (wear mechanism).  相似文献   

11.
研究了镍(Ni)过渡层对镍基合金718基底上沉积的银自润滑涂层性能的影响.实验结果显示,具有过渡层的银涂层晶粒尺寸变小,晶格参数和晶格应变无明显变化,涂层表面更加致密,缺陷减少.在77~300K热冲击50次后,涂层表面无裂纹、剥落等现象,具有良好的抗热震性能.在常温大气、常温真空和?100°C真空三种下,对涂层的摩擦磨...  相似文献   

12.
TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.  相似文献   

13.
Ni–Co duplex coating has been successfully cladded on copper substrate by continuous wave CO2 laser. The average microhardness of cladded coating was 635 HV0.05, which was about 7 times of Cu substrate (92 HV0.05). During sliding wear tests, the volume loss of copper substrate was about 7 times of Ni–Co duplex coating at 60 min. The high microhardness and crack free advantages of Ni–Co duplex coating, were favorable to reduce the plastic deformation and adhesive wear of copper substrate, resulting in the improvement of wear properties.  相似文献   

14.
铁基合金激光熔覆层高温润滑磨损性能   总被引:4,自引:4,他引:0       下载免费PDF全文
 为提高40Cr合金钢的表面耐磨性,采用预置激光熔覆法在40Cr基体表面制备铁基合金涂层, 利用扫描电镜观察分析熔覆层显微组织形貌,用显微硬度仪测试熔覆层截面显微硬度,用摩擦磨损试验机测定在润滑条件下基体、熔覆层的摩擦系数随温度变化的规律。研究结果表明:熔覆层与基体实现良好冶金结合,熔覆层横截面微观组织呈现平面晶、树枝晶和胞状晶分布;熔覆层硬度值介于617.5~926.6 HV0.2之间,基体硬度介于205.2~278.2 HV0.2之间;在200 ℃以下,熔覆层摩擦系数在磨程中趋于平稳,在0.1附近轻微波动,小于基体平均摩擦系数;当温度超过200 ℃,油膜分解,引发润滑失效,磨损方式向干摩擦转化,磨损机理从微切削磨损主导向粘着磨损、磨粒磨损和氧化磨损复合磨损方式转化。  相似文献   

15.
在AISI 4140基体上采用预置材料激光熔敷的方法制备了镍石墨烯立方氮化硼(Ni-Graphene-CBN)复合材料涂层。X射线衍射(XRD)和Raman测试证明了石墨烯和CBN存在于所制备的涂层材料中。扫描电镜(SEM)图片给出了所制备的复合材料涂层的表面和断面形貌。进行了复合材料涂层的纳米机械性能和耐磨性的测试。测试结果表明:随着CBN含量的增加,复合涂层的硬度及弹性模量相应提高,分别由4.3 GPa提高到6.2 GPa和101 GPa提高到140 GPa; 同时其耐磨性也有明显改善,6% CBN含量的涂层摩擦系数由基体材料的0.2降低到0.15,最大磨损量降到基体磨损量的一半。  相似文献   

16.
The kinetics of wear, heating, and relaxation of the friction force of antifriction self-lubricating polymer composite materials with metals are investigated. Heat-resistant polyheteroarylenes are used as a matrix. The fillers are metal and polymer powders, TiO2 whiskers, and strips of oriented polymer fibers. It is established that the temperature and pressure dependences of the heating rate, wear, and relaxation of the friction force are described by the Zhurkov equation. The activation energy of these processes is equal to the activation energy of fracture of the matrix. The activation volume of fracture depends on the nature and shape of the filler particles. It is concluded that the kinetics of wear, heating, and relaxation of the friction force are determined by the probability of occurrence of destructive thermal fluctuations responsible for the breaking of chemical bonds in molecules of the matrix.  相似文献   

17.
Influence of heat treatment regime on adhesion and wear resistance of Ni-P electroless coating on AZ91 magnesium alloy is investigated in this work. The pretreated substrate was plated using a bath containing nickel sulphate, sodium hypophosphite and sodium acetate as main constituents. The coated samples were heat treated at 400-450 °C for 1-8 h. Adhesion of coating was estimated from the scratch test with an initial load of 8.80 N. Wear resistance was studied using the pin-on-disc method. It was found that there is no significant dependence of the coating wear resistance on heat treatment regime, as the formation of Al-Ni intermetallic sub-layers that reduce coating adhesion is limited to regions where Al17Mg12 phase is present in the substrate. Moreover, the coating shows good sliding properties due to the formation of oxide glazes in the wear track.  相似文献   

18.
Laser cladding of in situ TiB2/Fe composite coating on steel   总被引:1,自引:0,他引:1  
To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB2/Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB2 and α-Fe. TiB2 particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the α-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB2.  相似文献   

19.
Abstract

The demand for reducing wear and friction has become the chief aim in the automotive industry nowadays. The usage of lubricant is not considered enough as there is still room for improvements. As a solution, much research has arisen towards what we called self-lubricating ideas, in order to reduce friction better than lubricant. This paper presents an overview wear mechanism and the interface of carbon-based materials. This paper will also discuss the interfaces by carbon as substrate and coating layer. The findings show that for metals, the predominant wear mechanisms were abrasion and fatigue. Meanwhile, for polymers and coating (DLC), they were abrasive along with adhesive wear. The surface roughness of the substrate plays a crucial role in increasing the excellent performance of the DLC coating. The interfaces of carbon elements definitely give huge impact on both self-lubricant materials and coatings where the coefficient of friction and wear rate changes drastically even with 1 wt.% addition. Nevertheless, a clear understanding of the factors that affect the tribological performance is very essential in performance improvement for potential applications.  相似文献   

20.
In the present work, a novel process has been developed to improve the tribological and corrosion properties of austenitic stainless steels. Efforts have been made to deposit titanium coatings onto AISI 316L stainless steel by magnetron sputtering, and then to partially convert the titanium coatings to titanium oxide by thermal oxidation. The resultant coating has a layered structure, comprising of rutile-TiO2 layer at the top, an oxygen and nitrogen dissolved α-Ti layer in the middle and a diffuse-type interface. Such a hybrid coating system showed good adhesion with the substrate, improved corrosion resistance, and significantly enhanced surface hardness and tribological properties of the stainless steel in terms of much reduced friction coefficient and increased wear resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号