首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, an \({L^p}\)-approach to the primitive equations is developed. In particular, it is shown that the three dimensional primitive equations admit a unique, global strong solution for all initial data \({a \in [X_p,D(A_p)]_{1/p}}\) provided \({p \in [6/5,\infty)}\). To this end, the hydrostatic Stokes operator \({A_p}\) defined on \({X_p}\), the subspace of \({L^p}\) associated with the hydrostatic Helmholtz projection, is introduced and investigated. Choosing \({p}\) large, one obtains global well-posedness of the primitive equations for strong solutions for initial data \({a}\) having less differentiability properties than \({H^1}\), hereby generalizing in particular a result by Cao and Titi (Ann Math 166:245–267, 2007) to the case of non-smooth initial data.  相似文献   

2.
We establish the L 1-estimates for continuous dependence of entropy solutions to the full Euler equations away from the vacuum on two physical parameters: the adiabatic exponent γ → 1 that passes from the non-isentropic to isothermal Euler equations and the Mach number that passes from the compressible to incompressible Euler equations. Our analysis involves the effective approach developed in our earlier work and additional new techniques that generalize this approach to the setting of the full Euler equations.  相似文献   

3.
This paper describes a numerical discretization of the compressible Euler equations with a gravitational potential. A pertinent feature of the solutions to these inhomogeneous equations is the special case of stationary solutions with zero velocity, described by a nonlinear partial differential equation, whose solutions are called hydrostatic equilibria. We present a well‐balanced method, meaning that besides discretizing the complete equations, the method is also able to maintain all hydrostatic equilibria. The method is a finite volume method, whose Riemann solver is approximated by a so‐called relaxation Riemann solution that takes all hydrostatic equilibria into account. Relaxation ensures robustness, accuracy, and stability of our method, because it satisfies discrete entropy inequalities. We will present numerical examples, illustrating that our method works as promised. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A compactness framework is established for approximate solutions to the Euler equations in one-dimensional nonlinear elastodynamics by identifying new properties of the Lax entropies, especially the higher order terms in the Lax entropy expansions, and by developing ways to employ these new properties in the method of compensated compactness. Then this framework is applied to establish the existence, compactness, and decay of entropy solutions in L for the Euler equations in nonlinear elastodynamics with a more general stress-strain relation than those for the previous existence results. This compactness framework is further applied to solving the Euler equations of conservation laws of mass, momentum, and energy for a class of thermoelastic media, and the equations of motion of viscoelastic media with memory.  相似文献   

5.
In this paper, we justify mathematically the derivation of the planetary geostrophic equations (PGE) from the hydrostatic Boussinesq equations with Coriolis force, usually named the primitive equations (PE). The planetary geostrophic equations, which are a classical model of thermohaline circulation, are obtained from the primitive equations as the Froude number Fr, the Rossby number , and the Burger number Bu go to 0. These numbers are supposed to satisfy and which is relevant to the thermohaline planetary dynamics. The analysis performed here does not follow the same lines as previous asymptotic studies on rotating fluids. It involves a singular operator which is not skew symmetric, and prevents classical energy estimates. To handle such operator requires to put the primitive equations under normal form, together with an appropriate use of the viscous terms.  相似文献   

6.
We study the convergence of two-dimensional stationary Kolmogorov flows as the Reynolds number increases to infinity. Since the flows considered are stationary solutions of Navier-Stokes equations, they are smooth whatever the Reynolds number may be. However, in the limit of an infinite Reynolds number, they can, at least theoretically, converge to a nonsmooth function. Through numerical experiments, we show that, under a certain condition, some smooth solutions of the Navier-Stokes equations converge to a nonsmooth solution of the Euler equations and develop internal layers. Therefore the Navier-Stokes flows are nearly singular for large Reynolds numbers. In view of this nearly singular solution, we propose a possible scenario of turbulence, which is of an intermediate nature between Leray's and Ruelle-Taken's scenarios.  相似文献   

7.
In Dissipative Euler Flows and Onsager’s Conjecture. arxiv.1205.3626, preprint, 2012, De Lellis and Székelyhidi construct Hölder continuous, dissipative (weak) solutions to the incompressible Euler equations in the torus ${{\mathbb T}^3}$ . The construction consists of adding fast oscillations to the trivial solution. We extend this result by establishing optimal h-principles in two and three space dimensions. Specifically, we identify all subsolutions (defined in a suitable sense) which can be approximated in the H ?1-norm by exact solutions. Furthermore, we prove that the flows thus constructed on ${{\mathbb T}^3}$ are genuinely three-dimensional and are not trivially obtained from solutions on ${{\mathbb T}^2}$ .  相似文献   

8.
In (Isett, Regularity in time along the coarse scale flow for the Euler equations, 2013), the first author proposed a strengthening of Onsager’s conjecture on the failure of energy conservation for incompressible Euler flows with Hölder regularity not exceeding \({1/3}\). This stronger form of the conjecture implies that anomalous dissipation will fail for a generic Euler flow with regularity below the Onsager critical space \({L_t^\infty B_{3,\infty}^{1/3}}\) due to low regularity of the energy profile. This paper is the first and main paper in a series of two, the results of which may be viewed as first steps towards establishing the conjectured failure of energy regularity for generic solutions with Hölder exponent less than \({1/5}\). The main result of the present paper shows that any given smooth Euler flow can be perturbed in \({C^{1/5-\epsilon}_{t,x}}\) on any pre-compact subset of \({\mathbb{R}\times \mathbb{R}^3}\) to violate energy conservation. Furthermore, the perturbed solution is no smoother than \({C^{1/5-\epsilon}_{t,x}}\). As a corollary of this theorem, we show the existence of nonzero \({C^{1/5-\epsilon}_{t,x}}\) solutions to Euler with compact space-time support, generalizing previous work of the first author (Isett, Hölder continuous Euler flows in three dimensions with compact support in time, 2012) to the nonperiodic setting.  相似文献   

9.
It is shown that the well-known variational principles for the ideal compressible fluid model in Eulerian coordinates have the following deficiencies:
  1. They are not related to the corresponding variational principles in Lagrangian coordinates;
  2. The variation procedure in these variational problems does not lead to the equations of motion themselves in the Euler form; rather it leads to relations which correspond to definite classes of solutions of the Euler equations. Here allowance for the equations of the constraints imposed by the adiabaticity and continuity conditions limits the region of application of these variational principles to only potential flows;
  3. More general results, involving flows other than potential, are achieved by artificial selection of certain additional constraint conditions imposed on the quantities being varied, and in this case additional clarification is required to ascertain whether any inviscid compressible fluid flow is the extremum of the corresponding variational problem.
A new formulation of the Hamilton principle for the inviscid compressible fluid in Eulerian coordinates is suggested which is free from these deficiencies.  相似文献   

10.
Long-time solutions to the Navier-Stokes (NS) and Euler (E) equations of incompressible flow in the whole plane are constructed, under the assumption that the initial vorticity is in L 1(2) for (NS) and in L 1(2) L r(2) for some r>2 for (E). It is shown that the solution to (NS) is unique, smooth and depends continuously on the initial data, and that the (velocity) solution to (E) is Hölder continuous in the space and time coordinates. It is shown that as the viscosity vanishes, there is a subsequence of solutions to (NS) converging to a solution of (E).  相似文献   

11.
We consider the Euler equations of barotropic inviscid compressible fluids in the exterior domain. It is well known that, as the Mach number goes to zero, the compressible flows approximate the solution of the equations of motion of inviscid, incompressible fluids. In dimension 2 such limit solution exists on any arbitrary time interval, with no restriction on the size of the initial data. It is then natural to expect the same for the compressible solution, if the Mach number is sufficiently small. First we study the life span of smooth irrotational solutions, i.e. the largest time interval of existence of classical solutions, when the initial data are a small perturbation of size from a constant state. Then, we study the nonlinear interaction between the irrotational part and the incompressible part of a general solution. This analysis yields the existence of smooth compressible flow on any arbitrary time interval and with no restriction on the size of the initial velocity, for any Mach number sufficiently small. Finally, the approach is applied to the study of the incompressible limit. For the proofs we use a combination of energy estimates and a decay estimate for the irrotational part.  相似文献   

12.
We consider the notion of a functional solution of the Euler equations for incompressible fluid flows. We show that a functional solution can be constructed under very weak a priori estimates on approximate solution sequences of the equation; an estimate uniform in L loc 1 together with weak consistency with the equation is sufficient to construct a solution. We prove that if we have an estimate uniform in L loc 2 available for the approximate solution sequence, then the structured functional solution just described becomes a measure-valued solution in the sense of DiPerna & Majda. We also show that a functional solution can be obtained from a measure-valued solution. We give an example showing that a much higher concentration of energy than in the case of measure-valued solutions is allowed by the approximation procedure of a functional solution.  相似文献   

13.
We study the Euler equations for slightly compressible fluids, that is, after rescaling, the limits of the Euler equations of fluid dynamics as the Mach number tends to zero. In this paper, we consider the general non-isentropic equations and general data. We first prove the existence of classical solutions for a time independent of the small parameter. Then, on the whole space ℝ d , we prove that the solution converges to the solution of the incompressible Euler equations. Accepted December 1, 2000?Published online April 23, 2001  相似文献   

14.
Zubtsov  A. V. 《Fluid Dynamics》1989,24(6):862-867
The axisymmetric flow of an incompressible fluid is considered. An exact solution of the Euler equations corresponding to the breakdown of a straight vortex filament of intensity 0 into a vortex filament of lesser intensity and a conical vortex surface is obtained. It is shown that beyond the breakdown point in the region bounded by the conical vortex surface reverse flows occur. An investigation of the problem with allowance for viscous effects at large Reynolds numbers makes it possible to establish a relation between the free parameters entering into the solution of the Euler equations. The results obtained are useful for investigating the problem of the breakdown of a swirled jet, whose solution has recently been receiving much attention [1, 2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 47–52, November–December, 1989.  相似文献   

15.
We establish the existence of global weak solutions of the two-dimensional incompressible Euler equations for a large class of non-smooth open sets. Loosely, these open sets are the complements (in a simply connected domain) of a finite number of obstacles with positive Sobolev capacity. Existence of weak solutions with L p vorticity is deduced from a property of domain continuity for the Euler equations that relates to the so-called γ-convergence of open sets. Our results complete those obtained for convex domains in Taylor (Progress in Nonlinear Differential Equations and their Applications, Vol. 42, 2000), or for domains with asymptotically small holes (Iftimie et al. in Commun Partial Differ Equ 28(1–2), 349–379, 2003; Lopes Filho in SIAM J Math Anal 39(2), 422–436, 2007).  相似文献   

16.
Sun  M.  Takayama  K. 《Shock Waves》2003,13(1):25-32
In numerical simulation of the Euler equations, the slipstream or shear layer that appears behind a diffracted shock wave may develop small discrete vortices using fine computational meshes. Similar phenomena were also observed in the simulation of a Mach reflection that is accompanied by a shear layer. However, these small vortices have never been observed in any shock-tube experiment, although the wave pattern and the shape of the main vortex agree very well with visualization results. Numerical solutions obtained with coarse grids may agree better with experimental photos than those with very fine grids because of the pollution of the small vortices. This note tries to investigate the effect of viscosity on the small vortices by comparing the solutions of the laminar Navier-Stokes equations and the turbulence model. It is found that the small vortices are still observed in the solution of the laminar Navier-Stokes equations, although they can be suppressed by using the turbulence model. Numerical and experimental factors that are responsible for the deviation of the laminar solutions from experimental results are discussed. The secondary vortex in shock diffraction is successfully simulated by solving the Navier-Stokes equations.Received: 28 March 2003, Accepted: 6 May 2003, Published online: 11 June 2003  相似文献   

17.
In this paper we study the two-dimensional hydrostatic Euler equations in a periodic channel. We prove the local existence and uniqueness of H s solutions under the local Rayleigh condition. This extends Brenier’s (Nonlinearity 12(3):495–512, 1999) existence result by removing an artificial condition and proving uniqueness. In addition, we prove weak–strong uniqueness, mathematical justification of the formal derivation and stability of the hydrostatic Euler equations. These results are based on weighted H s a priori estimates, which come from a new type of nonlinear cancellation between velocity and vorticity.  相似文献   

18.
19.
A wide class of solutions of Euler equations with quadratic pressure are described. In Lagrangian coordinates, these solutions linearize exactly momentum equations and are characterized by special initial data: the Jacobian matrix of the initial velocity field has constant algebraic invariants. The equations are integrated using the method of separation of the time and Lagrangian coordinates. Time evolution is defined by elliptic functions. The solutions have a poletype singularity at a finite time. A representation for the velocity vortex is given.  相似文献   

20.
This paper concerns the well-posedness theory of the motion of a physical vacuum for the compressible Euler equations with or without self-gravitation. First, a general uniqueness theorem of classical solutions is proved for the three dimensional general motion. Second, for the spherically symmetric motions, without imposing the compatibility condition of the first derivative being zero at the center of symmetry, a new local-in-time existence theory is established in a functional space involving less derivatives than those constructed for three-dimensional motions in (Coutand et al., Commun Math Phys 296:559–587, 2010; Coutand and Shkoller, Arch Ration Mech Anal 206:515–616, 2012; Jang and Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, 2008) by constructing suitable weights and cutoff functions featuring the behavior of solutions near both the center of the symmetry and the moving vacuum boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号