首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
俞剑冬  刘桦  朱志伟 《力学季刊》2007,28(4):539-548
从RANS方程和RNGk-ε湍流模型出发,采用流体体积法(VOF)来模拟密度分层流动,对盐水和淡水因密度差异导致的分层重力流动现象进行了数值模拟.文中报道了平底水槽重力流、狭孔交换流的数值模拟结果,分层重力流锋面运动速度的计算值与现有的半理论半经验公式一致.为了揭示地形变化对分层重力流的影响,对设有缓变潜堤的水槽内分层重力流动的形成过程进行了数值模拟,给出了重力头推进速度和局部流场的计算结果,并讨论了分层流界面、流量和锋面附近的流速分布特征.  相似文献   

2.
This paper studies the propagation of detonation and shock waves in vortex gas flows, in which the initial pressure, density, and velocity are generally functions of the coordinate — the distance from the symmetry axis. Rotational axisymmetric flow having a transverse velocity component in addition to a nonuniform longitudinal velocity is considered. The possibility of propagation of Chapman–Jouguet detonation waves in rotating flows is analyzed. A necessary conditions for the existence of a Chapman–Jouguet wave is obtained.  相似文献   

3.
We present a shadowing theorem on the existence of hyperbolic trajectories on finite time intervals based on the EPH partition by George Haller and apply it to an example which is inspired by the problem of two-dimensional symmetric vortex merger.  相似文献   

4.
A semi-analytical method for upscaling two-phase immiscible flows in heterogeneous porous media is described. This method is developed for stratified reservoirs with perfect communication between layers (the case of vertical equilibrium), in a viscous dominant regime, where the effects of capillary forces and gravity may be neglected. The method is discussed on the example of its basic application: waterflooding in petroleum reservoirs. We apply asymptotic analysis to a system of two-dimensional (2D) mass conservation equations for incompressible fluids. For high anisotropy ratios, the pressure gradient in vertical direction may be set zero, which is the only assumption of our derivation. In this way, the 2D Buckley–Leverett problem may be reduced to a one-dimensional problem for a system of quasi-linear hyperbolic equations, of a number equal to the number of layers in the reservoir. They are solved numerically, based on an upstream finite difference algorithm. Self-similarity of the solution makes it possible to compute pseudofractional flow functions depending on the average saturation. The computer partial differential equation solver COMSOL is used for comparison of the complete 2D solutions with averaged 1D simulations. Cases of both discrete and continuous (log-normal) permeability distribution are studied. Generally, saturation profiles of the 1D model are only slightly different from the 2D simulation results. Recovery curves and fractional flow curves fit well. Calculations show that at a favorable mobility ratio (displaced to displacing phase) crossflow increases the recovery, while at an unfavorable mobility ratio, the effect is the opposite. Compared with the classical Hearn method, our method is more general and more precise, since it does not assume universal relative permeabilities and piston-like displacement, and it presumes non-zero exchange between layers. The method generalizes also the study of Yortsos (Transp Porous Media 18:107–129, 1995), taking into account in a more consistent way the interactions between the layers.  相似文献   

5.
Homogeneous turbulence under unstable uniform stratification (N 2 < 0) and vertical shear is investigated by using the linear theory (or the so-called rapid distortion theory, RDT) for an initial isotropic turbulence over a range −∞ ≤ R i =N 2/S 2 ≤ 0. The initial potential energy is zero and P r =1 (i.e. the molecular Prandtl number).One-dimensional (streamwise) k 1−spectra, especially Θ33(k 1) (i.e., that of the vertical kinetic energy, are investigated. In agreement with previous experiments, it is found that the unstable stratification affects the turbulence quantities at all scales. A significant increase of the vertical kinetic energy is observed at low wavenumbers k 1 (i.e. large scales) due to an increase of the stratification . The effect of the shear (S) is appreciable only at high wavenumbers k 1 (i.e. small scales).Based on the importance of the spectral components with k 1 = 0, the asymptotic forms of Θ ij (k 1 = 0) or equivalently the so-called “two-dimensional” energy components (2DEC) are analyzed in detail. The asymptotic form for the ratio of 2DEC is compared to the long-time limit of the ratio of real energies. In the unstable stratified shearless case (S=0,N 2 ≠ 0) the variances and the covariances of the velocity and the density are derived analytically in terms of the Weber functions, while when S ≠ 0 and N 2 ≠ 0 they are obtained numerically (−100 ≤ R i <0 and . The results are discussed in connection to previous experimental results in unstable stratified open channel flows cooled from above by Komori et al. Phy Fluids 25, 1539–1546 (1982).It is shown that the Richardson number dependence of the long-time limit of the ratios of real energies is well described by this “simple” model (i.e. the dependence of the long-time limit of 2DEC on R i ). For example, the ratio of the potential energy to the kinetic energy (q 2/2), approaches −R i /(1−R i ), the ratio of turbulent energy production by buoyancy forces to production by shearing forces (i.e. the flux Richardson number, R if ), approaches R i . Also, the Richardson number dependence of the principal angle (β) of the Reynolds stress tensor and the angle (βρ) of the scalar flux vector is fairly predicted by this model .On the other hand, it is found that the above ratios are insensitive to viscosity, while the ratios ɛ /q 2 and , depend on the viscosity and they evolve asymptotically like t −1. The turbulent Froude number, F rt =(L Oz /L E )2/3, where L Oz and L E are the Ozmidov length scale and the Ellison length scale, respectively, evolves asymptotically like t −1/3.  相似文献   

6.
In this work, a theoretical investigation is performed on modeling interfacial and surface waves in a layered fluid system. The physical system consists of two immiscible liquid layers of different densities 1 > 2 with an interfacial surface and a free surface, inside a prismatic-section tank. On the basis of the potential formulation of the fluid motion, we derive a nonlinear system of partial differential equations using the Hamiltonian formulation for irrotational flow of the two fluids of different density subject to conservative force. As a consequence of the assumption of potential velocity, the dynamics of the system can be described in terms of variables evaluated only at the boundary of the fluid system, namely the separation surface and the free surface. This Hamiltonian formulation enables one to define the evolution equations of the system in a canonical form by using the functional derivatives.  相似文献   

7.
小尺度波(扰动波)迭加在大尺度波(未受扰动波)上形成的波动一般之为“骑行波”。研究了有限可变深度的理想不可压缩流体中的骑行波的显式Hamliltn表示,考虑了自由面上流体与空气之间的表面张力。采用自由面高度和自由面上速度势构成的Hamilton正则变量表示骑行波的动能密度,并在未受扰动波的自由面上作一阶展开。运用复变函数论方法处理了二维流动。先用保角变换将物理平面上的流动区域变换到复势平面上的无限长带形区域,然后在复势平面上用Fourier变换解出Laplace方程,最后经Fourier逆变换求出了扰动波速度热所满足的积分方程。作为特例考虑了平坦底部的流动,导出了动能密度的显式表达式。这里给出的积分方程可以替代相当难解的Hamilton正则方程。通过求解积分方程可得出agrange密度的显式表达式。本文提出的方法约研究骑行波的Hamilton描述以及波的相互作用问题提供了新的途径,有助于了解海面的小尺度波的精细结构。  相似文献   

8.
9.
Compressibility effects are present in many practical turbulent flows, ranging from shock-wave/boundary-layer interactions on the wings of aircraft operating in the transonic flight regime to supersonic and hypersonic engine intake flows. Besides shock wave interactions, compressible flows have additional dilatational effects and, due to the finite sound speed, pressure fluctuations are localized and modified relative to incompressible turbulent flows. Such changes can be highly significant, for example the growth rates of mixing layers and turbulent spots are reduced by factors of more than three at high Mach number. The present contribution contains a combination of review and original material. We first review some of the basic effects of compressibility on canonical turbulent flows and attempt to rationalise the differing effects of Mach number in different flows using a flow instability concept. We then turn our attention to shock-wave/boundary-layer interactions, reviewing recent progress for cases where strong interactions lead to separated flow zones and where a simplified spanwise-homogeneous problem is amenable to numerical simulation. This has led to improved understanding, in particular of the origin of low-frequency behaviour of the shock wave and shown how this is coupled to the separation bubble. Finally, we consider a class of problems including side walls that is becoming amenable to simulation. Direct effects of shock waves, due to their penetration into the outer part of the boundary layer, are observed, as well as indirect effects due to the high convective Mach number of the shock-induced separation zone. It is noted in particular how shock-induced turning of the detached shear layer results in strong localized damping of turbulence kinetic energy.  相似文献   

10.
We introduce a simple method for the numerical simulation of bluff body flows where the solid object is represented by a distributed body force in the Navier–Stokes equations. The body force density is found at every time step to reduce the velocity within the computational cells occupied by the rigid body to a prescribed value. The method combines certain ideas from the immersed boundary method which was developed to treat biofluid mechanical flows and the volume-of-fluid method for simulating flows with fluid–fluid interfaces. The main advantage of this embedding method is that the computations can be effected on a regular Cartesian grid, without the need to fit the grid to the bluff body surfaces. Thus, flow past several complex bodies can be treated as easily as flow past a single body. The method is validated by reproducing well-established results for vortex shedding from a stationary cylinder. The flow past two side-by-side cylinders is then investigated. When the distance between the cylinders is small, they are seen to shed vortices in-phase, whereas for larger distances, the shedding occurs in anti-phase. For intermediate distances, various shedding patterns are observed, including quasi-periodic, asymmetric and chaotic regimes. Mean values and phase portraits associated with the cylinder lift and drag coefficients, as well as spectral analysis of the same data, are used to describe the flow. A transition diagram that can be compared with experiments or models outlines the various dynamical regimes as a function of the distance between the cylinders and the Reynolds number.  相似文献   

11.
Elastic interactions in a system of two body-points possessing both translational and rotational degrees of freedom are studied for the most general case of motion in 3D space. The continuum mechanics method is used as a theoretical foundation for describing the interactions. A definition of strain measures for the discrete system is given by analogy with that in continuum mechanics. Constitutive equations for force and moment vectors are derived based on the energy balance equation. Several new interaction potentials are suggested.  相似文献   

12.
Spray-guided direct injection spark-ignition engines operated in stratified charge mode have a high potential for improved fuel economy. As fuel is injected late in the compression stroke mixture preparation is crucial for reliable ignition. Multiple injections per cycle have proven to increase the overall combustion stability. Nevertheless cycle-to-cycle variations (ccv) are observed whose origin is not well understood. Strong impact of in-cylinder flows and spray-induced turbulence of preceding injections upon subsequent spray development and mixture formation is one possible reason for ccv. In this work mutual interactions of in-cylinder charge motion and sprays from multiple injections were investigated. Time resolved particle image velocimetry (PIV) and Mie scattering of fuel droplets at 16 kHz was used to simultaneously measure the temporal evolution of in-cylinder flow fields and spray formation. The data revealed significant spray-induced vortices perturbing the tumble flow. Sprays from subsequent injections were disturbed and showed greatly enhanced ccv compared to the first injection. A distinct upwards fluid flow impinging the cylinder head at the injector’s location (termed funnel flow) was identified as primary origin of spray deformation for second and third injections.  相似文献   

13.
The Navier—Stokes equations for incompressible fluids are coupled to models of reduced complexity, such as Oseen and Stokes, and the corresponding transmission conditions are investigated. A mathematical analysis of the corresponding problems is carried out. Numerical results obtained by finite elements and spectral elements are shown on several flow fields of physical interest.  相似文献   

14.
Hamiltonian formulations for surface waves   总被引:2,自引:0,他引:2  
  相似文献   

15.
Flow, Turbulence and Combustion - Turbulence–chemistry interaction models such as the conditional moment closure and various flamelet models require a presumed Probability Density Function...  相似文献   

16.
The vector field induced on the finite-dimensional inertial manifold of a delay equation with small delay is proved to agree, up to the order of the expansion, with the vector field induced on a slow manifold of the differential equation obtained from the delay equation by expanding to some finite order in powers of the delay. In addition, the smoothness of inertial vector fields, the smoothness of slow vector fields, and the existence of combinatorial-style identities obtained by equating the series expansions of the slow and inertial vector fields are discussed.Dedicated to Professor Shui-Nee Chow on the occasion of his 60th birthday.AMS Subject Classification: 34K19.  相似文献   

17.
We establish existence, uniqueness, convergence and stability of solutions to the equations of steady flows of fibre suspension flows. The existence of a unique steady solution is proven by using an iterative scheme. One of the restrictions imposed on the data confirms a well known fact proven in Galdi and Reddy (J Non-Newtonian Fluid Mech 83:205–230, 1999), Munganga and Reddy (Math Models Methods Appl Sci 12:1177–1203, 2002) and Munganga et al. (J Non-Newtonian fluid Mech 92:135–150, 2000) that the particle number N p must be less than 35/2. Exact solutions are calculated for Couette and Poiseuille flows. Solutions of Poiseuille flows are shown to be more accurate than those of Couette flow when a time perturbation is considered.  相似文献   

18.
19.
20.
Experimental data are reported for condensation of R134a in an 8.38 mm inner diameter smooth tube in inclined orientations with a mass flux of 200 kg/m2 s. Under these conditions, the flow is stratified and there is an optimum inclination angle, which leads to the highest heat transfer coefficient. There is a need for a model to better understand and predict the flow behaviour. In this paper, the state of the art of existing models of stratified two-phase flows in inclined tubes is presented, whereafter a new mechanistic model is proposed. The liquid–vapour distribution in the tube is determined by taking into account the gravitational and the capillary forces. The comparison between the experimental data and the model prediction showed a good agreement in terms of heat transfer coefficients and pressure drops. The effect of the interface curvature on the heat transfer coefficient has been quantified and has been found to be significant. The optimum inclination angle is due to a balance between an increase of the void fraction and an increase in the falling liquid film thickness when the tube is inclined downwards. The effect of the mass flux and the vapour quality on the optimum inclination angle has also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号