首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stationary collisonless shock waves propagating perpendicularly to an initial magnetic field are produced by the fast-rising magnetic field \((\dot B = 7 \cdot 10^{10} G/sec)\) of a theta pinch (coil diameter 16 cm, coil length 60 cm). The initial plasma is produced by a fast theta pinch discharge (810 kHz). At filling pressures between 5 and 15 mtorr H2 or D2 the degree of ionization is about 50%. By choosing the filling pressure properly it is possible to trap a homogeneous magnetic field. The ions of this plasma have a temperature of a few 10 eV. This value is much higher than the electron temperature and results in a local plasmaβ between 0.3 and 5. In this initial plasma stationary collisionless shock waves with Mach numbers between 1.5 and 5 are observed. The snow-plough model is used to derive conditions for the stationary state, attainable Mach number, and velocity of the front which relate the external magnetic field and the parameters of the initial plasma. Strong collisionless dissipation can be demonstrated by measuring the profiles of magnetic field, density, and electron temperature of the shock waves. For the electrons this dissipation mechanism can be described by an effective collison frequency. This phenomenologically introduced frequency determines the width of the shock front at least for subcritical shock waves. It exceeds the classical electron-ion collision frequency by 1–2 orders of magnitude and is roughly equal to one-third of the ion plasma frequency. The ion temperature can be estimated from the steady state conservation relations. The ions are heated in the two degrees of freedom perpendicular to the magnetic field. For shock waves with Mach numbers below the critical one the ions seem to be heated merely adiabatically. In strong shock waves this heating is considerably exceeded, and for high Mach numbers it yields ion temperatures up to about 500 eV. Finally, semi-empirical formulas are derived to estimate the possible temperatures of electrons and ions behind the shock front.  相似文献   

2.
The stability of a periodic ion-acoustic wave of a finite amplitude propagating in a nonisothermal plasma is investigated. It is demonstrated that such a wave is unstable with respect to the splitting into a large number of satellite waves with effective wave numbers different from the wave number of the initial wave. The phase velocity of the satellite waves differs therefore from that of the initial pulse. Hence, the satellite waves with bigger phase velocity will “overtake” the initial pulse and turbulize the upstream plasma. The scattering of ions and electrons by the fluctuations of electric field of turbulent oscillations will cause the energy dissipation of the initial ion-acoustic wave translational motion and produce a collisionless shock wave.  相似文献   

3.
李洋  贾敏  吴云  李应红  宗豪华  宋慧敏  梁华 《中国物理 B》2016,25(9):95205-095205
Plasma synthetic jet actuator(PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity.In this paper,the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 k Pa to 100 k Pa.The energy consumed by the PSJA is roughly the same for all the pressure levels.Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures.The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases.The peak jet front velocity always appears at the first appearance of a jet,and it decreases gradually with the increase of the air pressure.A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 k Pa.The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures,and it drops with the rising of the air pressure.High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 k Pa.  相似文献   

4.
An analysis is made of the overturning of nonlinear Alfvén waves in a collisionless plasma. It is shown that overturning is followed by the appearance of a region which broadens with time and consists of two collisionless shock waves which can be joined at the point s2=1. If only one Riemann invariant changes in the region of the collisionless shock waves, the waves are simple. The structures of the collisionless shock waves are constructed for different initial conditions of the nonlinear wave. The Whitham averaging method is used for this purpose. Conditions are obtained which are similar to the Rankine-Hugoniot adiabats for passage through the collisionless shock waves. The effect of overturning one of the collisionless shock waves, involving the zeroing of the density at the soliton peak on its trailing edge, is treated as a bifurcation for which a discontinuity occurs in an analog of the hydrodynamic velocity and phase of the nonlinear Alfvén wave. The width of one of the collisionless shock waves decreases with an increase in the parametera which determines the magnitude of the field discontinuity when overturning occurs.L. N. Tolstoi State University, Checheno-Ingushk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 62–67, January, 1993.  相似文献   

5.
New electrostatic instabilities in the plasma shock front are reported. These instabilities are driven by the electro- static field which is caused by charge separation and the parameter gradients in a plasma shock front. The linear analysis to the high frequency branch of electrostatic instabilities has been carried out and the dispersion relations are obtained numerically. There are unstable disturbing waves in both the parallel and perpendicular directions of shock propagation. The real frequencies of both unstable waves are similar to the electron electrostatic wave, and the unstable growth rate in the parallel direction is much greater than the one in the perpendicular direction. The dependence of growth rates on the electric field and parameter gradients is also presented.  相似文献   

6.
During investigations carried out with hydrogen as the working gas on the coaxial accelerator, a retrograde shock wave front was observed in streak photographs, taken for velocity and trapping fraction measurements of the snowplough. The velocity of this wave front was found to be 8 × 104 m/s which falls in the category of strong ionizing shocks. In such cases the life of the pinch was found to be longer and this is because such waves ionize more gas and increase the duration of the low-β plasma in the interelectrode space.  相似文献   

7.
A mechanism of action of a shock wave on an active medium, which leads to an additional energy release source, is considered. This source moves together with the shock wave front and depends on the magnitude and direction of the electric field applied to the plasma and on the current density in the plasma. The study is a continuation of an earlier publication devoted to the propagation of weak shock waves. Here, we consider shock waves of an arbitrary intensity with an arbitrary mechanism of formation of an additional energy contribution due to variation of the parameters of the medium as a result of passage of the shock wave. Special cases of this effect are the propagation of a shock wave in a plasma and detonation burning.  相似文献   

8.
于明  刘全 《物理学报》2016,65(2):24702-024702
凝聚炸药爆轰在边界高声速材料约束下传播时,爆轰波会在约束材料界面上产生复杂的折射现象.本文针对凝聚炸药爆轰波在高声速材料界面上的折射现象展开理论和数值模拟分析.首先通过建立在爆轰ZND模型上的改进爆轰波极曲线理论给出爆轰波折射类型,然后发展一种求解爆轰反应流动方程的基于特征理论的二阶单元中心型Lagrange计算方法来数值模拟典型的爆轰波折射过程.从改进爆轰波极曲线理论和二阶Lagrange方法数值模拟给出的结果看出,凝聚炸药爆轰波在高声速材料界面上的折射类型有四种:反射冲击波的正规折射、带束缚前驱波的非正规折射、带双Mach反射的非正规折射、带λ波结构的非正规折射.  相似文献   

9.
When a gas bubble in a liquid interacts with an acoustic wave near a solid surface, the bubble first expands and then collapses. In this paper, a mathematical framework combining the Gilmore model and the method of characteristics is presented to model the shock wave emitted at the end of the bubble collapse. It allows to describe the liquid velocity at the shock front as a function of the radial distance to the bubble center in the case of spherical bubble collapse. Numerical calculations of the liquid velocity at the shock front have shown that this velocity increases with the acoustic amplitude and goes through a maximum as a function of the initial bubble radius. Calculations for different gas state equations inside the bubble show that the Van der Waals law predicts a slightly higher liquid velocity at the shock front than when considering a perfect gas law. Finally, decreasing the value of the surface tension at the bubble/liquid interface results in an increase of the liquid velocity at the shock front. Our calculations indicate that the strength of the shock waves emitted upon spherical bubble collapse can cause delamination of typical device structures used in microelectronics.  相似文献   

10.
The objective of this paper is to apply both experimental and numerical methods to investigate acoustic waves induced by the oscillation and collapse of a single bubble. In the experiments, the schlieren technique is used to capture the temporal evolution of the bubble shapes, and the corresponding acoustic waves. The results are presented for the single bubble generated by a low-voltage bubble generator in the free field of water. During the numerical simulations, a three-dimensional (3D) weakly compressible model is introduced to investigate the single bubble dynamics, including the generation and propagation of acoustic waves. The results show that (1) Compression wave, rarefaction wave and shock wave are generated during expansion stage, collapse stage and rebound stage of the bubble respectively. (2) Compression waves are induced by the rapid expansion of the bubble and eventually steepen into one shock wave propagating outward in the liquid, then another strong shock wave is emitted at the final collapse stage. The velocity and pressure of the liquid field increases after the shock wave. (3) Rarefaction waves are generated during the collapse stage due to the contraction of the bubble. The rarefaction wave reduces the liquid pressure and its spatial distribution is dispersive. The pressure of these acoustic waves and their effect on the liquid velocity attenuate with the increase of propagation distance.  相似文献   

11.
Evolution of small disturbances in a fully developed incompressible turbulent flow is considered on the base of the transport equation for the single-point probability density function (PDF) of velocity fluctuations. It is shown that at high frequencies this equation is similar to the Vlasov equation for charged plasma in a self-consistent electromagnetic field having longitudinal wave solutions for turbulent stresses similar to Langmuir waves. It is found that the longitudinal waves of turbulent stresses have a constant phase velocity and can be damped, neutral, or growing waves, depending on the type of undisturbed probability density function of velocity fluctuations. The obtained result differs from the previously published solutions to this problem using the statistical moments closures according to which the wave disturbances should be neutral or damped. The possibilities of experimental observation of longitudinal waves of turbulent stresses are analyzed.  相似文献   

12.
卞保民  陈笑  夏铭  杨玲  沈中华 《物理学报》2004,53(2):508-513
将空气中球对称冲击波衰减波前传播公式推广到非完全中心对称情况,根据对光学阴影法对激光等离子体冲击波波前测试数据的计算分析,提出液体中点源激光等离子体冲击波旋转椭球面波前传播公式.并且用声学方法对水中和酒精中的激光等离子体冲击波波前进行实验测试,结果表明测试结果与计算公式相吻合. 关键词: 激光 等离子体冲击波 旋转椭球面  相似文献   

13.
Background oriented schlieren method is applied in diagnostics of shock waves in air. The method can be used for visualization of shock waves that are generated after explosion or due to motion at ultrasonic speeds. Experimental data make it possible to observe propagation of a shock wave in space, estimate the asymmetry of energy liberation in explosion, and determine parameters of shock wave.  相似文献   

14.
A simple method to calculate the parameters of a shock wave in a space between the shock wave front and the Chapman-Jouguet plane is considered. Solving a velocity equation, one can calculate the pressure, density, and temperature of the gas, as well as determine the size of a detonation region in a one-dimensional approximation. The dependences of the detonation region size on input parameters are derived. From these dependences, one can estimate the run of the same curves in the real situation.  相似文献   

15.
A method to detect the discontinuity of a shock wave from computational fluid dynamics (CFD) data was developed based on the theory of characteristics and was adopted to replace the inaccurate method that involves observation of the location of steep spatial gradient with respect to the primitive variables, such as pressure. A shock wave is mathematically defined as a convergence of characteristics, in which each type of Riemann invariant is conserved within each characteristic. In the vector field of the characteristics, such convergences are interpreted as critical lines of the streamlines, which are easily identified by calculating the eigenvectors of the vector field of propagation velocity of the Riemann invariant. The use of a triangular cell system enables unique determination of the linearized vector field in each cell and enables analytical identification of the critical line within this field. Shock waves can be successfully extracted using this method. The method can be extended to the detection of moving shock waves by considering the coordinate moving with the shock.  相似文献   

16.
New experimental data on the behavior of the K8 and TF1 glasses under shock-wave loading conditions are obtained. It is found that the propagation of shock waves is close to the self-similar one in the maximum compression stress range 4-12 GPa. Deviations from a general deformation diagram, which are related to viscous dissipation, take place when the final state of compression is approached. The parameter region in which failure waves form in glass is found not to be limited to the elastic compression stress range, as was thought earlier. The failure front velocity increases with the shock compression stress. Outside the region covered by a failure wave, the glasses demonstrate a high tensile dynamic strength (6-7 GPa) in the case of elastic compression, and this strength is still very high after transition through the elastic limit in a compression wave.  相似文献   

17.
The formulae for the momentum of quasi-monochromatic wave packets of transverse and longitudinal waves in a plasma without a magnetic field are derived including the terms of the second order in the amplitude of the electromagnetic field. The well-known increase of the momentum of the transverse wave penetrating into the plasma is given by the momentum (transported with the group velocity of the wave) of the averaged motion of the plasma. The laws of energy and momentum conservation lead simply to some results of the theory of the wave decay.Nademlýnská 600, Praha 9, Czechoslovakia.The authors thank K. Jungwirth for valuable discussions.  相似文献   

18.
Based on the velocity gradient model, an extended continuum model with consideration of the mean-field velocity difference is proposed in this paper. By using the linear stability theory, the linear stability criterion of the new model is gained, which proved that mean-field velocity difference has significant influence on stability of traffic flow. The KdV–Burgers equation is derived by using non-linear analysis method and the evolution of density wave near the neutral stability line is explored. Numerical simulations are carried out how mean-field velocity difference affect the stability of traffic flow, and energy consumption is also studied for this new macro model. At the same time, complicated traffic phenomena such as local cluster effects, shock waves and rarefaction waves can be reproduced in the new model by numerical simulation. Numerical results are consistent with the theoretical analysis, which indicates that the mean-field velocity difference not only suppresses traffic jam, but also depresses energy consumption.  相似文献   

19.
在高重复频率激光推进的研究中,激波的合并是发生在激波演化后期的,同时由于脉冲间隔短,脉冲宽度对流场演化的影响也需要详细研究。考虑了激光辐照过程对流场演化的影响,通过数值计算对激波演化特性进行了研究。结果表明,初期波阵面的椭球形状逐渐转化为一个球形,球心与击穿点的距离随时间逐渐减小并最终趋于稳定。基于激波合并的应用,当激波马赫数在1~2之间时,给出了激波波阵面半径随时间的变化规律,以及激波高压区长度和波峰压强随激波波阵面半径变化规律的经验公式。  相似文献   

20.
Shock waves generated by a laser-induced plasma were investigated using a pump-and-probe technique. Both 7-ns and 40-ps laser pulses at 1.06 m were employed to initiate breakdown in water. Two He-Ne laser beams were used as a velocity probe, allowing the accurate measurement of the shock velocity around the plasma. The maximum shock pressure was determined from the measured shock velocities, the jump condition and the equation of state for water. The conservation of the total momentum of the shock front was used to derive expressions for the shock velocity, particle velocity and shock pressure vs. the distance (r) from the center of the plasma. For a shock wave of spherical symmetry, the shock pressure is proportional to 1/r 2. Our work shows that the expanding plasma initially induces a shock wave; the shock wave dissipates rapidly becoming an acoustic wave within 300–500 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号