首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In the present study, a new turbulent premixed combustion model is proposed by integrating the Coherent Flame Model with the modified eddy dissipation concept, and relating the fine structure mass fraction to the flame surface density. First, experimental results of turbulent flame speed available from literature are compared with the predicted results at different turbulence intensities to validate the flame surface density model. It is observed that the model is able to predict the turbulent burning speeds accurately. Then, a comprehensive validation is carried out utilizing data on a turbulent lifted methane flame issuing into a vitiated co-flow. Detailed comparison of temperature and species concentrations between experiment and simulation is performed at different heights of the flame. Overall, the model is found to predict both the spatial variation and peak values of the scalars at various heights satisfactorily.  相似文献   

2.
A detailed chemical kinetic mechanism for gas phase combustion of 2,4,6-tri-nitrotoluene (TNT) has been developed to explore problems of explosive performance and of soot formation during the destruction of munitions. Thermodynamic properties of intermediate and radical species are estimated by group additivity. Reactions for the decomposition and oxidation of TNT and its intermediate products are assembled, based on information from the literature and from analogous reactions where the rate constants are available. The resulting detailed reaction mechanism for TNT is added to existing reaction mechanisms for RDX and for hydrocarbons which can be produced from TNT and RDX. Properties of the reaction mechanism are demonstrated by examining problems of soot formation during open burning of TNT and mixtures of TNT and RDX. Computed results show how addition of oxygen to TNT can reduce the amounts of soot formed in its combustion and why RDX and most mixtures of RDX and TNT do not produce soot during their combustion or incineration.  相似文献   

3.
Paradigms in turbulent combustion research   总被引:7,自引:0,他引:7  
The development of the basic conceptual viewpoints, or paradigms, for turbulent combustion in gases over the last 50 years is reviewed. Significant progress has been made. Recent successes in the prediction of pollutant species and extinction/re-ignition phenomena in non-premixed flames are seen as the result of close interaction between experimentalists, theoreticians, and modellers. Premixed turbulent flames seem to be dependent on a much wider range of factors, and predictive capabilities are not so advanced. Implications for large eddy simulation (LES) and partially premixed combustion are outlined.  相似文献   

4.
5.
Turbulent combustion will remain central to the next generation of combustion devices that are likely to employ blends of renewable and fossil fuels, transitioning eventually to electrofuels (also referred to as e-fuels, powerfuels, power-to-x, or synthetics). This paper starts by projecting that the decarbonization process is likely to be very slow as guided by history and by the sheer extent of the current network for fossil fuels, and the cost of its replacement. This transition to renewables will be moderated by the advent of cleaner engines that operate on increasingly cleaner fuel blends. A brief outline of recent developments in combustion modes, such as gasoline compression ignition for reciprocating engines and sequential combustion for gas turbines, is presented. The next two sections of the paper identify two essential areas of development for advancing knowledge of turbulent combustion, namely multi-mode or mixed-mode combustion and soot formation. Multi-mode combustion is common in practical devices and spans the entire range of processes from transient ignition to stable combustion and the formation of pollutants. A range of burners developed to study highly turbulent premixed flames and mixed-mode flames, is presented along with samples of data and an outline of outstanding research issues. Soot formation relevant to electrofuels, such as blends of diesel-oxymethylene ethers, hydrogen-methane or ethylene-ammonia, is also discussed. Mechanisms of soot formation, while significantly improved, remain lacking particularly for heavy fuels and their blends. Other important areas of research, such as spray atomization, turbulent dense spray flames, turbulent fires, and the effects of high pressure, are briefly mentioned. The paper concludes by highlighting the continued need for research in these areas of turbulent combustion to bring predictive capabilities to a level of comprehensive fidelity that enables them to become standard reliable tools for the design and monitoring of future combustors.  相似文献   

6.
In a previous paper we proposed a new model for turbulent flows, called the fractal model (FM), which is applicable both to RANS and LES formulations. Here, the model is extended to the reactive case with the goal of simulating turbulent flames, both premixed and non-premixed.

FM is a subgrid model that describes the physics of the small scales of turbulence building on the phenomenological concept of vortex cascade and on fractal theory. The physics of the small scales is summarized by a turbulent ‘viscosity’ μt, to be added to the molecular one. μt is zero where the flow is laminar and, in particular, goes to zero at solid walls.

The fundamental assumption in treating combustion in this work is that chemical reactions take place only at the dissipative scales of turbulence, i.e. near the so-called ‘fine structures’ (the eddy dissipation concept). FM predicts the growth of dissipative scales due to heat release; therefore, it enables a local DNS in the hot regions of the flow where the dissipative scale may grow up to the cell dimension. FM can also estimate the volume fraction γ* occupied by the ‘fine structures’; this quantity is critical for modelling the reaction rate, and therefore the source terms in the energy and species equations. FM can also estimate the local surface of the reactive ‘fine structures’, that is, the local flame front area. It also takes into account, although in approximate manner, the formation of islands of unburnt mixture. In this paper, the model (in the isotropic formulation (IFM)) is used in conjunction with a time-dependent LES (but with the limitations of an isotropic model) approach and is validated through a three-dimensional axisymmetric diffusion flame studied experimentally by Correa and Gulati and numerically by many researchers. The time-dependent results obtained are in good agreement with the experiments. Moreover, the IFM solution offers a possible explanation for the stabilization process of this flame, which undergoes local stretching of the order of 46 000 s?1.  相似文献   

7.

The fundamental soundness of three flamelet models for non-premixed turbulent combustion is examined on the basis of their performance in an idealized model problem that merges ideas from the laminar asymptotic theory for non-premixed flames and rigorous homogenization theory for the diffusion of a passive scalar. The overall flame configuration is stabilized by a mean gradient in the passive scalar: large Damköhler number asymptotics results are available for the laminar case to quantify the finite-rate effects that cause the flame to depart from its equilibrium state; the same results can also be used to incorporate higher-order corrections in the approximation of the reactive variables in terms of the passive scalar. The use of such flamelet approximations has been extended well beyond the laminar regime as they lie at the core of practical strategies to simulate non-premixed flames in the turbulent regime: the flamelet representation avoids the problem of turbulence closure for the reactive variables by replacing it by the presumably much simpler closure problem for a passive scalar. It is precisely the validity of this substitution outside the laminar regime that is addressed here in the idealized context of a class of small-scale periodic flows for which extensive rigorous results are available for the passive scalar statistics. Results for this simplified problem are reported here for significant wide ranges of Peclet and Damköhler numbers. Asymptotic convergence is observed in terms of the Damköhler number, with a convergence rate that is found to match the laminar predictions and appears relatively insensitive to the Peclet number. The passive scalar dissipation plays a key role in achieving higher-order corrections for the finite-rate case: replacing its pointwise value by an averaged value is convenient practically and can be rigorously motivated for the class of flows studied here, but while it does achieve an overall improvement over the lower-order equilibrium model, the simplification compromises the higher asymptotic convergence observed with the original finite-rate flamelet model with exact local dissipation.(Some figures in this article are in colour only in the electronic version; see www.iop.org)  相似文献   

8.
Combustion plays an important role in a wide variety of industrial applications, such as gas-turbines, furnaces, spark-ignition engines, and various air-breathing engines. The ability to predict and understand the behavior of reacting flows in practical devices is fundamental to improved combustors with higher efficiency and reduced levels of emissions. At present, large eddy simulation is considered the most promising approach for premixed combustion modeling since the large-scale energy containing flow structures are resolved on the grid. However, the typically thin reaction zone cannot be resolved. To overcome this difficulty flamelet models, in which the reaction is assumed to take place in thin layers, wrinkled by the turbulence can sometimes be used. In these models, the turbulent flame speed can be represented as the product of the laminar flame speed, Su, corrected for the effects of stretch (strain and curvature) and the flame-wrinkling, Ξ. In this study, we propose to model Ξ using fractal theory. This model requires sub-models for the fractal dimension, and the inner and outer cut-offs—the latter being set by the grid. A model is proposed for the inner cut-off, whereas an empirical parameterization is used to provide the fractal dimension. The proposed model is applied to flame kernel growth in homogeneous isotropic turbulence in a fan-stirred bomb and to a lean premixed flame in a plane symmetric dump combustor. Good qualitative and quantitative agreement with experimental data were obtained for the proposed model in both cases. Comparison with other well-known turbulent flame speed closure models shows that the proposed model behaves at least as good, or even better, than the reference models.  相似文献   

9.
The simulation of turbulent flames fully resolving the smallest flow scales and the thinnest reaction zones goes along with specific requirements, which are discussed from dimensionless numbers useful to introduce the generic context in which direct numerical simulation (DNS) of turbulent flames is performed. Starting from this basis, the evolution of the DNS landscape over the past five years is reviewed. It is found that the flow geometries, the focus of the studies and the overall motivations for performing DNS have broadened, making DNS a standard tool in numerical turbulent combustion. Along these lines, the emerging DNS of laboratory burners for turbulent flame modeling development is discussed and illustrated from DNS imbedded in Large Eddy Simulation (LES) and flow resolved simulation of bluff-body flames. The literature shows that DNS generated databases constitute a fantastic playground for developing and testing a large spectrum of promising machine learning methods for the control and the optimisation of combustion systems, including novel numerical approaches based on the training of neural networks and which can be evaluated in DNS free from sub-model artefacts. The so-called quasi-DNS is also progressively entering the optimisation loop of combustion systems, with the application of techniques to downsize real combustion devices in order to perform fully resolved simulations of their complex geometries. An example of such study leading to the improvement of an incinerator efficiency is reported. Finally, numbers are given relative to the carbon footprint of the generation of DNS databases, motivating the crucial need for community building around database sharing.  相似文献   

10.
Experimental studies of aerosol combustion under quiescent and turbulence conditions have been conducted to quantify the differences in the flame structure and burning rates between aerosol and gaseous mixtures. Turbulence was generated by variable speed fans to yield rms turbulence velocities between 0.5 and 4.0 m/s and this was uniform and isotropic. Homogeneously distributed and near monodispersed iso-octane-air aerosol clouds were generated using a thermodynamic condensation method. Spherically expanding flames, following central ignition, at near atmospheric pressures were employed to quantify the flame structure and propagation rate. The effects of the diameter of fine fuel droplets on flame propagation were investigated. It is suggested that the inertia of fuel droplets is an important cause of flame enhancement during early flame development. During later stages, cellular flame instability and the effective, gaseous phase, equivalence ratio becomes important. The latter effect leads has increases the flame speed of rich mixtures, but decreases that of lean ones. Droplet enhancement of burning velocity can be significant at low turbulence but is negligible at high turbulence.  相似文献   

11.
We use a hybrid two-phase numerical methodology to investigate the flow-field subsequent to the detonation of a spherical charge of TNT with an ambient distribution of a dilute cloud of aluminum particles. Rayleigh–Taylor instability ensues on the contact surface that separates the inner detonation products and the outer shock-compressed air due to interphase interaction, which grows in time and results in a mixing layer where the detonation products afterburn with the air. At early times, the ambient particles are completely engulfed into the detonation products, where they pick up heat and ignite, pick up momentum and disperse. Subsequently, as they disperse radially outwards, they interact with the temporally growing Rayleigh–Taylor structures, and the vortex rings around the hydrodynamic structures results in the clustering of the particles by also introducing local transverse dispersion. Then the particles leave the mixing layer and quench, yet preserve their hydrodynamic ‘footprint’ even until much later; due to this clustering, preferential heating and combustion of particles is observed. With a higher initial mass loading in the ambient cloud, larger clusters are observed due to stronger/larger hydrodynamic structures in the mixing layer – a direct consequence of more particles available to perturb the contact surface initially. With a larger particle size in the initial cloud, clustering is not observed, but when the initial cloud is wider, fewer and degenerate clusters are observed. We identify five different phases in the dispersion of the particles: (1) engulfment phase; (2) hydrodynamic instability-interaction phase; (3) first vortex-free dispersion phase; (4) reshock phase; and (5) second vortex-free dispersion phase. Finally, a theoretical Buoyancy-Drag model is used to predict the growth pattern of the ‘bubbles’ and is in agreement with the simulation results. Overall, this study has provided some useful insights on the post-detonation explosive dispersal of dilute aluminum particle clouds.  相似文献   

12.
13.

Reactive flow simulations using large-eddy simulations (LES) require modelling of sub-filter fluctuations. Although conserved scalars like mixture fraction can be represented using a beta-function, the reactive scalar probability density function (PDF) does not follow an universal shape. A one-point one-time joint composition PDF transport equation can be used to describe the evolution of the scalar PDF. The high-dimensional nature of this PDF transport equation requires the use of a statistical ensemble of notional particles and is directly coupled to the LES flow solver. However, the large grid sizes used in LES simulations will make such Lagrangian simulations computationally intractable. Here we propose the use of a Eulerian version of the transported-PDF scheme for simulating turbulent reactive flows. The direct quadrature method of moments (DQMOM) uses scalar-type equations with appropriate source terms to evolve the sub-filter PDF in terms of a finite number of delta-functions. Each delta-peak is characterized by a location and weight that are obtained from individual transport equations. To illustrate the feasibility of the scheme, we compare the model against a particle-based Lagrangian scheme and a presumed PDF model for the evolution of the mixture fraction PDF. All these models are applied to an experimental bluff-body flame and the simulated scalar and flow fields are compared with experimental data. The DQMOM model results show good agreement with the experimental data as well as the other sub-filter models used.  相似文献   

14.
15.
Large eddy simulation of turbulent combustion systems   总被引:6,自引:0,他引:6  
This paper reviews recent and ongoing work on numerical models for turbulent combustion systems based on a classical LES approach. The work is confined to single-phase reacting flows. First, important physico-chemical features of combustion-LES are discussed along with several aspects of overall LES models. Subsequently, some numerical issues, in particular questions associated with the reliability of LES results, are outlined. The details of chemistry, its reduction, and tabulation are not addressed here. Second, two illustrative applications dealing with non-premixed and premixed flame configurations are presented. The results show that combustion-LES is able to provide predictions very close to measured data for configurations where the flow is governed by large turbulent structures. To meet the future demands, new key challenges in specific modelling areas are suggested, and opportunities for advancements in combustion-LES techniques are highlighted. From a predictive point of view, the main target must be to provide a reliable method to aid combustion safety studies and the design of combustion systems of practical importance.  相似文献   

16.
In turbulent combustion simulations, the flow structure at the unresolved scale level needs to be reasonably modeled. Following the idea of turbulent flamelet equation for the non-premixed flame case, which was derived based on the filtered governing equations(L. Wang, Combust. Flame 175, 259(2017)), the scalar dissipation term for tabulation can be directly computed from the resolved flowing quantities, instead of solving species transport equations. Therefore, the challenging source term closure for the scalar dissipation or any assumed probability density functions can be avoided;meanwhile the chemical sources are closed by scaling relations. The general principles are discussed in the context of large eddy simulation with case validation. The new model predictions of the bluff-body flame show sufficiently improved results, compared with these from the classic progress-variable approach.  相似文献   

17.
18.
Numerical simulation of turbulent combustion: Scientific challenges   总被引:1,自引:0,他引:1  
Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.  相似文献   

19.
In the framework of Reynolds-averaged Navier–Stokes simulation, supersonic turbulent combustion flows at the German Aerospace Centre (DLR) combustor and Japan Aerospace Exploration Agency (JAXA) integrated scramjet engine are numerically simulated using the flamelet model. Based on the DLR combustor case, theoretical analysis and numerical experiments conclude that: the finite rate model only implicitly considers the large-scale turbulent effect and, due to the lack of the small-scale non-equilibrium effect, it would overshoot the peak temperature compared to the flamelet model in general. Furthermore, high-Mach-number compressibility affects the flamelet model mainly through two ways: the spatial pressure variation and the static enthalpy variation due to the kinetic energy. In the flamelet library, the mass fractions of the intermediate species, e.g. OH, are more sensible to the above two effects than the main species such as H2O. Additionally, in the combustion flowfield where the pressure is larger than the value adopted in the generation of the flamelet library or the conversion from the static enthalpy to the kinetic energy occurs, the temperature obtained by the flamelet model without taking compressibility effects into account would be undershot, and vice versa. The static enthalpy variation effect has only little influence on the temperature simulation of the flamelet model, while the effect of the spatial pressure variation may cause relatively large errors. From the JAXA case, it is found that the flamelet model cannot in general be used for an integrated scramjet engine. The existence of the inlet together with the transverse injection scheme could cause large spatial variations of pressure, so the pressure value adopted for the generation of a flamelet library should be fine-tuned according to a pre-simulation of pure mixing.  相似文献   

20.
Experimental results are presented from an investigation of the effects of large transverse accelerations on flame propagation and blowout limits in premixed step-stabilized flames. The accelerations, which exceed ±10,000 g in the present study, induce large body forces on the high-density reactants and low-density products. These body forces can substantially alter the flame propagation mechanisms and dramatically increase the flame blowout limits. Sustained centripetal accelerations ac ≡ U2/R are created by flowing a premixed propane–air reactant stream with equivalence ratios 0.7  Φ  1.9 at various speeds U through a semicircular channel with radius R. A backward-facing step of height h on the radially outer (ac > 0) or inner (ac < 0) wall stabilizes the flame. For ac > 0 the acceleration acts to force high-density reactants into the recirculation zone and low-density products into the reactant stream, while ac < 0 forces hot products into the recirculation zone and impedes cold reactants from entering this zone. An otherwise identical straight channel provides corresponding baseline (ac = 0) results for comparison. The flow speed U, equivalence ratio Φ, and step height h are systematically varied for ac = 0, ac > 0, and ac < 0. Shadowgraph and chemiluminescence imaging show that as ac→ +∞ the propagation of the flame across the channel becomes independent of the flame burning velocity and instead is primarily due to large-scale “centrifugal pumping” driven by the induced body forces. For ac → −∞ the body forces effectively segregate reactants and products to produce a nearly flat flame. In both cases, for large |ac| values the resulting blowout limits can be substantially higher than those at ac = 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号