共查询到4条相似文献,搜索用时 0 毫秒
1.
Victor N. Khrustalev Mikhail Yu. Antipin Irina V. Borisova Valery V. Lunin Ghassoub Rima 《Journal of organometallic chemistry》2004,689(2):478-483
The reaction of equimolar quantities of LiOCH2CH2NMe2 and E14(OCH2CH2NMe2)2 (E14=Ge, Sn) in ether yielded new ate complexes [LiE14(OCH2CH2NMe2)3]2 (E14=Ge (1), Sn (2)) with bidentate ligands. The compounds 1 and 2 are white crystalline substances which are highly soluble in THF and pyridine and very sensitive to the traces of oxygen and moisture. The structures of these compounds are studied by X-ray diffraction analysis. The ate complexes 1 and 2 are powerful nucleophiles and may be employed as ligands (neutral) in the coordination chemistry of the transition metals. The electronegative O-substituents at the divalent E14 atoms render them less oxidizable than alkyl- or aryl-substituted derivatives, and the bidentate ligands, owing to intramolecular donor-acceptor interactions, make them more thermodynamically stable compared to monodentate ligands. 相似文献
2.
Revathi Balasubramanian Zahid H. Chohan Solange M.S.V. Doidge-Harrison R.Alan Howie James L. Wardell 《Polyhedron》1997,16(24):4283-4295
Estertn compounds, (MeO2CCH2CH2)2SnX2 [X2 = I2 (2); X2 = Br2 (9); X2 = Cl, Br (4)) or X2 = (NCS)2 (3)] have been obtained by halide exchange reactions of (MeO2CCH2CH2)2SnCl2. Crystal structure determinations of 2–4 revealed chelating MeO2CCH2CH2 units with distorted octahedral geometries at tin. The Sn---O bond lengths in the isothiocyanato complex, 3, are shorter [2.390(11) to 2.498(12), mean 2.439 Å], with the chelate bite angles, C---Sn---O, larger [74.3(7) to 78.2(6), mean 76.0°] than those in the halide analogues 2 and 4 [Sn---O = 2.519(2) to 2.541(8), mean 2.530 Å; C---Sn---O 72.8(3) to 73.9(4), mean 73.3°]. 1H, 13C and 119Sn NMR and IR spectra of 2–4 and 9 were determined in CDCl3 solution: the NMR spectra of (MeO2CCH2CH2)2SnX2 show the following trends: (i) both δ1H and δ13C, increase and (ii) both 2J (Sn---H) and 1J(Sn---C) decrease in the sequence X2 = (NCS)2, Cl2, ClBr, Br2 and I2. The MeO2CCH2CH2 and dmio groups (dmio = 1,3-dithiole-2-one-4,5-dithiolato) are all chelating groups in (MeO2CCH2CH2)2Sn(dmio) (5). As shown by X-ray crystallography, the tin atom in the anion of solid [Q][MeO2CCH2CH2Sn(dmio)2] 6 (Q = NEt4) forms 5 strong bonds [to C and the 4 thiolato S atoms, Sn---S 2.459(2) to 2.559(2) Å], arranged in a near trigonal bipyramidal array. There is an additional Intramolecular but weaker, interaction with the carbonyl oxygen atom [Sn---O = 3.111(5) Å]; v(C=O) = 1714 cm−1 in solid 6 (Q = NEt4). NMR spectra of 5 and 6 are also reported. 相似文献
3.
4.
Two new cadmium(II) complexes of the empirical formulae [Cd(SMDTC)3] · 2NO3 (1) and [Cd(SBDTC)2] · 2NO3 (2) have been synthesized and characterized by elemental analyses, UV–Vis, IR, 1H NMR and TGA techniques. In complex 1, the six coordination sites around cadmium are occupied by three neutral SMDTC molecules with N and S donor atoms from each ligand molecule, whereas in complex 2 the cadmium center is four coordinated with two relatively larger SBDTC ligands chelating with N and S donor atoms in the neutral thione form. In the solid state, thermal gravimetric analysis shows that both complexes are relatively volatile in nature and undergo facile thermal decomposition above 120 °C to form the metal sulfide followed by stepwise loss of ligand molecules. The crystal and molecular structure of complex 1 has been established by the X-ray diffraction method. The central cadmium(II) atom has an octahedral geometry with three five-membered chelate rings formed by SMDTC ligands. The crystal structure consists of parallel layers of cations and anions. The SMDTC molecules in cations are arranged with their N donor groups directed towards the anion layer in an alternating fashion and form hydrogen bonds with the O atoms of the anion. 相似文献