首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel microencapsulated red phosphorus (RP) was prepared through the molecular self-assembly of melamine cyanurate (MCA). Compared with the conventional encapsulated RP, MCA-encapsulated RP (MERP) shows simpler and more environment-friendly preparation process higher thermal stability and lower moisture absorption. With MERP filled in unreinforced polyamide 66 (PA66) and glass fiber (GF) reinforced PA66, flame retardant materials with satisfactory flame retardancy and mechanical performance can be obtained. The influence of the MCA/RP ratio on the flame retardancy as well as the condensed phase of MERP flame retardant PA66 was investigated to reveal the nitrogen-phosphorus (N-P) synergistic flame retarding effects between MCA and RP.  相似文献   

2.
陈力  王玉忠 《高分子科学》2012,30(2):297-307
A novel encapsulated flame retardant containing phosphorus-nitrogen(MSMM-Al-P) was prepared by encapsulating with polyamide 66(PA66-MSMM-Al-P) for the flame retardation of polyamide 6(PA6).The structure and thermal properties of PA66-MSMM-Al-P were characterized by Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy and thermogravimetric analysis.The flammability of PA6 containing flame retardants(MSMM-Al -P and PA66-MSMM-Al-P) was investigated by the limiting oxygen index test,vertical burning test and cone calorimeter. The flame retardancy and cone calorimetric analyses suggested a synergistic effect between PA66 and MSMM-Al-P in the flame-retardant PA6.Thermal stability of the flame-retardant PA6 was also investigated.  相似文献   

3.
The chelating ligands of boric acid and amino trimethyl phosphonate prepared a novel flame retardant (BAP) for the cotton fabric. A stable chemical and coordination bond was formed on the surface of the cotton fibers by a simple three-curing finishing process to make the fabric exhibits excellent durable flame retardancy. Cotton fabrics' tensile strength and whiteness got substantially retained after BAP treatment. 90 g/L BAP-treated samples (3 curing times, 50 laundry cycles) showed good flame retardancy and durability, holding the largest limit oxygen index, 29.7%, and the shortest damage length, 61 mm. A condensed phase and gas phase synergistic flame retardant mechanism was concluded by thermogravimetric, cone calorimeter tests, and thermogravimetric infrared analysis.  相似文献   

4.
Flame‐retardant polyamide 6 (PA6) was prepared by an inorganic‐organic composite (MCN or MgO/g‐C3N4) synthesized by incorporating magnesium oxide (MgO) combined with graphitic carbon nitride (g‐C3N4). As compared to g‐C3N4, MCN possessed a laminate structure, more holes, and a larger specific surface area. The addition of MCN could effectively improve the flame retardancy and mechanical properties of PA6 due to its better compatibility and dispersion in the PA6 matrix. When the addition of MCN was 20 wt%, the vertical combustion performance of the PA6/MCN sample reached flammability rating V‐0 (UL‐94) and the limiting oxygen index (LOI) was up to 32.1%. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) revealed that the introduction of MCN efficiently enhanced thermal stability of PA6. The morphologies of the char residue observed by scanning electron microscopy (SEM) verified that MCN promoted the formation of sufficient, compact, and homogeneous char layers on the composite's surface during burning. Thus led to increase the char layer strength and improve the flame retardancy of PA6. The thermogravimetric analysis/infrared (TG‐IR) revealed the gas‐phase retardancy mechanism of MCN. Compared with PA6/g‐C3N4, PA6/MCN showed better mechanical properties in terms of flexural strength and tensile strength.  相似文献   

5.
Halogen free nitrogen-phosphorous flame retardants (PMOP) were prepared through reaction of melamine and polyphosphoric acid in the presence of flame retardant modifier CM with silicotungistic acid as a catalyst in aqueous solution. FT-IR, XRD, DSC and TGA techniques were used to characterize the reaction product PMOP. The obtained flame retardants were then used to prepare flame retardant (FR) polyamide 6 (PA6) composite reinforced with glass fiber (GF) and the factors affecting the flame retardancy of the material were also investigated. The FR GF reinforced PA6 composite and the obtained charred layers were analyzed by utilizing TGA, SEM, FT-IR and XRD. The properties of the charred layer were connected with the flame retardancy of the corresponding material to reveal the flame retarding mechanism of FR GF reinforced PA6 composite. The experimental results show that PMOP flame retardant consists of melamine polyphosphate, melamine phosphate and possible melamine pyrophosphate. The presence of CM was found to improve the flame retardancy of FR GF reinforced PA6 composite. It was experimentally found that PMOP flame retardant, which is comparatively stable in the range of processing temperatures of PA6, is particularly suitable for flame retarding PA6 reinforced with GF. With increasing the flame retardant content, the flame retardancy of the FR reinforced material is not improved so obviously. However, the increase in the GF content greatly improves the flame retardancy of the composite, because GF greatly increases the char yield of material, decreases the maximal thermal decomposition rate, promotes the formation of charred layer with (PNO)x structure and greatly increases the strength of the charred layer. The prepared FR GF reinforced PA6 composites have good comprehensive properties with flame retardancy 1.6 mm UL 94 V-0 level, tensile strength 76.8 MPa, Young's modulus 11.7 GPa, Izod notched impact strength 4.5 kJ/m2, flexural strength 98.0 MPa and flexural modulus 7.2 GPa, showing a better application prospect.  相似文献   

6.
Flame retardancy is a desirable property for silk textiles, and it becomes necessity when silk textiles are for interior decorative use in building with public access. However, the flame retardant finishing technology available for silk has significant limitations. In this research, we studied the use of the combination of a hydroxyl-functional organophosphorus oligomer (HFPO) and 1,2,3,4-butanetetracarboxylic acid (BTCA) as a formaldehyde-free flame retardant finishing system for silk. When BTCA is applied to silk, most of BTCA reacts with the hydroxyl group on silk by single ester linkage. In the presence of HFPO, BTCA is able to bond HFPO onto silk by either a BTCA “bridge” between silk and HFPO or a BTCA-HFPO-BTCA cross-linkage between two silk protein molecules. We evaluated the flammability and physical properties of the silk fabric treated with HFPO and BTCA. The treated silk fabric demonstrated a high level of flame retardancy with modest loss in fabric tensile strength. The treated silk passed the vertical flammability test after 15 hand wash (HW) cycles. Increasing the HFPO concentration from 20% to 30% does not show significant improvement in the flame retardant performance of the treated silk. The thermal analysis data demonstrated that HFPO reduces silk's initial thermal decomposition temperature and promotes char formation.  相似文献   

7.
采用高碘酸钠对棉织物表面进行选择性氧化生成醛基,选取乙二胺与醛基反应,通过膦氢化加成反应将阻燃剂亚磷酸二甲酯接枝到棉织物表面,最后通过三羟甲基三聚氰胺对棉织物表面进行接枝改性,制备了含三羟甲基三聚氰胺/乙二胺/亚磷酸二甲酯阻燃棉织物.通过傅里叶红外光谱(FTIR)对改性后棉织物的结构进行了表征,通过极限氧指数(LOI)测试研究了其阻燃性能,通过锥形量热测试研究了其燃烧行为,通过在40℃皂水中洗涤10次考察了其耐水性能,通过扫描电子显微镜测试了其表面及燃烧后炭层的形貌.研究结果表明,经表面改性后,棉织物的LOI值由(19.5±1.0)%提高到了(43.1±1.0)%,经耐水洗测试后,LOI值仅下降至(42.6±1.0)%,保持了非常好的阻燃性能,表明通过表面接枝方法制备的三羟甲基三聚氰胺/乙二胺/亚磷酸二甲酯阻燃棉织物具有非常好的耐水洗性能.表面阻燃改性提高了棉织物在燃烧过程中的成炭性能,形成的连续膨胀的炭层较好地保护了内部织物,抑制了织物的降解和燃烧,从而提高了棉织物的阻燃性能.  相似文献   

8.
Modified montmorillonite‐containing phytic acid (PA‐MMT) has been prepared by acid treatment and then introduced into unsaturated polyester resin (UPR) with an intumescent flame retardant (IFRs). The flame retardancy and thermal degradation of UPR/IFRs/PA‐MMT were evaluated by a limiting oxygen index (LOI) test, a vertical burning test (UL‐94), a thermogravimetric analysis (TGA), and a cone calorimeter test (CCT). Besides, the mechanical properties were studied by a universal testing machine. The LOI value of UPR/IFRs/PA‐MMT composites was increased to 29.2%. The CCT results indicated that the incorporation of PA‐MMT and IFRs significantly improved the combustion behavior of UPR. The results of the mechanical properties indicated that 1.5 wt% loading of PA‐MMT in UPR/IFRs showed the highest improvement in flexural strength and tensile strength. The flame‐retardant mechanism of PA‐MMT/IFRs was examined and discussed based on the results of combustion behavior and char analysis.  相似文献   

9.
The surface chemical modified aluminum hypophosphite (AHP) defined as MAHP was successful prepared through P–H bonds on AHP surface reacted with the aldehyde groups in hexa‐(4‐aldehyde‐phenoxy)‐cyclotriphosphazene made in our lab. The wettability of the flame retardants was evaluated by water contact angle tests, and the water contact angle of the prepared MAHP dramatically increased from 0° for AHP to 145°, which indicated the surface modification made the superhydrophilic AHP into superior hydrophobic MAHP. The prepared MAHP and AHP, respectively, incorporated into polyamide 6 (PA6) matrix to prepare flame retardant PA6 composites and the fire retardancy and thermal degradation behavior of flame retardant PA6 composites were investigated by limiting oxygen index, vertical burning test (UL‐94), cone calorimeter, and thermogravimetric analysis tests. The morphologies and chemical compositions of the char residues for PA6 composites were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy, respectively. The water resistant properties of flame retardant PA6 composites were evaluated by putting the samples into distilled water at 70°C for 168 hr, and the mechanical properties for flame retardant PA6 composites were investigated by the tensile, flexural, and Izod impact strength tests. The results demonstrated that the PA6/MAHP composites successfully passed UL‐94 V‐0 flammability rating, and the limiting oxygen index value was 27.6% when the loading amount of MAHP was 21 wt%. However, there is no rating in vertical burning tests for PA6/AHP composite with the same amount of AHP, which indicated the surface modification of AHP enhanced the flame retardancy efficiency for PA6 composites. The morphological structures and analysis of X‐ray photoelectron spectroscopy of char residues revealed that the surface modification of AHP benefited to the formation of a sufficient, flame retardant elements rich, more compact and homogeneous char layer on the materials surface during combustion, which prevented the heat transmission and diffusion, limit the production of combustible gases, inhibit the emission of smoke and then led to the reduction of the heat release rate and smoke produce rate. The mechanical properties results revealed that the surface modification of AHP enhanced the mechanical properties, especially the Izod impact strength comparing with that of PA6/AHP composites with the same amount of flame retardant. After water resistance tests, the PA6/MAHP composites remained superior flame retardancy and presented continuous and compact char layer after cone calorimeter tests; however, the fire retardancy for PA6/AHP composite obviously decreased, and the char layer was discontinuous with big hole caused by the extraction of AHP by water during water resistance tests. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
A new intumescent flame retardant (PSiNII), which contains silicon, phosphorus, and nitrogen elements, has been synthesized and incorporated into polypropylene (PP). Its effect on the properties of PP is investigated based on flame retardancy, thermal properties, mechanical properties, and morphologies. The flame retardancy is evaluated by the limiting oxygen index value. The thermal properties (oxidative behaviors and thermal stability) are investigated by thermogravimetric analysis under nitrogen and air atmosphere. The mechanical properties are researched based on the maximum tensile stress and relative strain at break. The morphologies of PP/PSiNII are studied by the scanning electron micrograph. Their flame retardancy and thermal stability are improved by introducing PSiNII. PP/PSiNII blends can achieve high fire performance and keep high mechanical property at the same time. During a fire, the melt‐dripping behaviors of PP‐containing PSiNII are improved. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2548–2556, 2005  相似文献   

11.
A novel halogen-free flame retardant prepared by poly(p-ethylene terephthalamide) and ammonium polyphosphate (APP) on acrylonitrile–butadiene–styrene (ABS) resin has a good flame retardancy when loading is 30 %; but, once the mass fraction is <30 %, the system does not maintain outstanding flame retardancy. To improve the efficiency of this kind of flame retardant and LOI values, higher thermal stability acid source-red phosphorus is introduced. It is found that a little quantity of red phosphorus will improve the flame retardancy of ABS remarkably and will change the process of charring; when the mass fractions of APP, PPTA, and red phosphorus are only 15, 5, and 2 %, respectively, though the LOI of flame-retardant ABS is 27, UL-94 vertical burning test still reach V-0. Thermogravimetric analysis data show that red phosphorus changes the thermal degradation behavior of IFR-ABS system, shrink digital photo display system, and yield more stable residue at higher temperature; Fourier transform infrared results and scanning electron microscopic micrographs show that red phosphorus can catalyze the charring and form much denser char to improve the flame-retardant performance of the materials.  相似文献   

12.
Nylon-6,6 fabric has been widely used in military and civilian area for many years. However, the melting drip problem has not been effectively solved despite the efforts made in the last two decades. An intumescent flame retardant system, containing ammonium polyphosphate, melamine and pentaerythritol, has been proved to be effective on preventing melting drip during burning of nylon-6,6 fabric in this study. The LOI and the vertical flammability test indicate that this IFR (intumescent flame retardant) system could improve the flame retardancy and impart dripping resistance to nylon-6,6 fabric. Thermal behaviour of nylon-6,6 fabric treated with IFR system was investigated by thermogravimetric (TG) and differential scanning calorimetric(DSC) experiments. The results indicate that char residue of treated samples are above 13%, and the highest value could reach up to 24% at 750 °C which is much higher than that of the untreated fabric. SEM graphs of residue of treated and untreated nylon-6,6 fabric show that IFR could promote formation of residual char which impart anti-dripping property to nylon-6,6 fabric. The tensile property test shows that tensile strength of treated fabric decreased.  相似文献   

13.
Our previous study shows that surface photografting modification with maleic anhydride followed by reacting with triethanolamine can improve the flame retardancy of nylon-6,6 fabric. In this study, acrylamide was used as a grafting monomer to improve the flame retardancy of nylon-6,6 fabric. The effects of monomer concentration and irradiation time on photografting were investigated. The surface structure of the sample was analyzed by attenuated total reflection infrared spectroscopy (ATR-FTIR). Flame retardancy was characterized by limiting oxygen index test (LOI), the vertical burning test and cone calorimeter. The grafted sample has a higher LOI value than the untreated sample, and has no melting drip during the vertical burning test. The improvement of the flame retardancy and char formation of the nylon-6,6 fabric have also been verified by the thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) analysis.  相似文献   

14.
《先进技术聚合物》2018,29(2):951-960
Polyamide 66 (PA66) containing the phosphorus linking pendent group with inherent flame retardancy property was prepared by condensation polymerization of hexamethylene diammonium adipate (AH salt) and 9,10‐dihydro‐10‐[2,3‐di(hydroxycarbonyl)propyl]‐10‐phosphaphenanthrene‐10‐oxide (DDP) as a co‐monomer. Prior to condensation polymerization, DDP was reacted with hexamethylene diamine (HMDA), which made DDP easier to react with AH salt. Then, the DDP‐HMDA was introduced into AH salt solution to prepare inherent flame retarded PA66 (FRPA66). Fourier transform infrared spectra, nuclear magnetic resonance spectra, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, tensile test, vertical burning test, limiting oxygen index test, cone calorimetry, and scanning electron microscopy were utilized to investigate the properties of FRPA66. Experimental results indicated that the bulky pendent phosphorus group tended to destroy the structure regularity of FRPA66 and the molecular weight, crystallinity, and thermal stability reduced. The tensile strength of FRPA66 containing 5 wt% of DDP was 58.44 MPa, and it can achieve a V‐0 rating according to the vertical burning test with the limiting oxygen index value of 33.2%. This indicated that the inherent flame retarded PA66 expanded the application of PA66 materials.  相似文献   

15.
In order to achieve acceptable levels of flame retardancy of polymers, phosphorus-based flame retardant (FR) additives at about 20-30% w/w are required which is too high for conventional synthetic fibres. To know whether more finely sized particles of conventional FRs with or without nanoclay are more effective at the same concentration, composites of PA6 with bentonite and ammonium polyphosphate (APP) have been prepared by melt processing in a twin-screw extruder. XRD peaks and TEM images of PA6/Org-bentonite composite show partially ordered intercalation and ordered exfoliation. Thermal analysis in He shows that thermal stability of PA6 nanocomposite has increased by 18 °C compared with pure PA6 during degradation after 425 °C but it has decreased by 100 °C on inclusion of APP in PA6/nanoclay composites. The char yield is increased by 20% in PA6/bentonite/APP composites. No effect on thermal stability or char yield is observed by reducing the particle size of APP.  相似文献   

16.
In this paper, a novel synergistic flame retardant system containing magnesium hydroxide (MH) and methyl-blocked novolac (MBN) synthesized by Williamson ether route, were used for the flame retardance of polyamide-6 (PA6). The investigations showed that the thermal oxidative stability of MBN was obviously enhanced in the presence of MH compared with virgin novolac due to the decrease of phenol hydroxide groups subjected to be oxidized. It proved that MBN plays double roles: on the one hand, it remarkably promotes char formation and effectively eliminates the melt drips of PA6, therefore endows the materials with good flame retardancy; on the other hand, it also serves as an efficient lubricant and compatibilizer between MH and PA6, leading to the great improvement of the processability, as well as finer dispersion of MH in matrix, thus the flame retardant PA6 with good comprehensive performance can be obtained.  相似文献   

17.
This research aimed to create multifunctional cellulose fibres with water- and oil-repellent, self-cleaning, and flame retardant properties. A sol mixture of fluoroalkyl-functional siloxane, organophosphonate and methylol melamine resin was applied to cotton fabric by the pad-dry-cure method. Successful coating was verified by atomic force microscopy and Fourier transform infrared spectroscopy. The functional properties of the coated fibres were investigated using the static contact angles of water and n-hexadecane, the water sliding angles, the vertical test of flammability, the limiting oxygen index, and simultaneous thermal analysis. The results reveal that a homogeneous composite inorganic–organic polymer film formed on the cotton fabric surface exhibited the following properties: static contact angle of water of 150° and of n-hexadecane of 128°, water sliding angle of 10°, limiting oxygen index of 34 %, and high thermal stability. These results demonstrate the synergistic activity of the compounds in the coating, which resulted in the creation of a “lotus effect” on the fabric surface as well as excellent flame retardancy and thermal stability.  相似文献   

18.
A novel thermally conductive Polyamide 6 (PA6) with good fire resistance was prepared by introducing a phosphorous-nitrogen flame retardant (FR) and platelet-shaped hexagonal boron nitride (hBN) into the matrix. With high thermal conductivity and good flame retardancy, the material is suitable for applications in electronic and electrical devices. The limiting oxygen index (LOI) changes for various loadings content of FR. However this formulation still does not show an ideal fire resistance, due to the appearance of melt dripping behavior during the UL 94 test. With the extra introduction of 3 vol% and 5 vol% hBN, the melt dripping behavior during the burning process completely disappeared. The hBN also increased the thermal conductivity. Furthermore PA6 compounded with FR and hBN showed a better thermal stability than neat PA6. The morphology of the char residues was investigated by scanning electron microscopy (SEM). The flaky hBN acted as the framework in the char structure and the rigid hBN could effectively break the bubble-shaped char on the surface of the residues which resulted in the enhancement of the strength and compactness of the char.  相似文献   

19.
A thermally stable imidazolium organoclay was synthesized to improve the flame retardancy performance of polyamide 66 (PA 66). To enhance flame retardancy of the PA 66/organoclay nanocomposite, the thermally stable organoclay was coated with monomethylol melamine (MMM) before melt‐compounding with PA 66. Transmission electron microscopy and X‐ray diffraction results confirmed the partial exfoliation of the organoclay in the PA 66 matrix. The use of the thermally stable organoclay did not affect the thermal stability of PA 66. The cone calorimeter results showed that the PA 66/orgnaoclay nanocomposite exhibited a greatly reduced heat release rate and a longer ignition time. However, the PA 66/organoclay binary nanocomposite had no rating in the UL‐94 vertical burning test because it did not extinguish until the entire polymer component was burnt. The PA 66 nanocomposite with 15 wt% of MMM‐coated organoclay performed better in the ignition resistance test than the PA 66/organoclay nanocomposite containing 15 wt% of melamine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Lyocell fabrics are widely applied in textiles, however, its high flammability increases the risk of fire. Therefore, to resolve the issue, a novel biomass-based flame retardant with phosphorus and nitrogen elements was designed and synthesized by the reaction of arginine with phosphoric acid and urea. It was then grafted onto the lyocell fabric by a dip-dry-cure technique to prepare durable flame-retardant lyocell fabric (FR-lyocell). X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that the flame retardant was successfully introduced into the lyocell sample. Thermogravimetric (TG) and Raman analyses confirmed that the modified lyocell fabric featured excellent thermal stability and significantly increased char residue. Vertical combustion results indicated that FR-lyocell before and after washing formed a complete and dense char layer. Thermogravimetric Fourier-transform infrared (TG-FTIR) analysis suggested that incombustible substances (such as H2O and CO2) were produced and played a significant fire retarding role in the gas phase. The cone calorimeter test corroborated that the peak of heat release rate (PHRR) and total heat release (THR) declined by 89.4% and 56.4%, respectively. These results indicated that the flame retardancy of the lyocell fabric was observably ameliorated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号