首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heat capacity of single-crystal samples of five chalcogenides (LiInS2, LiInSe2, LiGaS2, LiGaSe2, and LiGaTe2) was measured with DSC in a temperature range from 180 to 460 K. The data for LiInS2 and LiInSe2 were compared with the literature data and shown to agree with the results of adiabatic calorimetry (Gmelin and Hönle in Thermochimica Acta 269: 575–590, 1995) better than with other DSC data (Kühn et al. in Cryst Res Technol 22: 265–269, 1987). Besides, the high-temperature fitting polynomial for C P(T) published about 30 years ago for LiInS2 is wrong. LiGaS2, LiGaSe2, and LiGaTe2 were measured for the first time.  相似文献   

2.
Densities for aqueous solutions of magnesium tetraborate MgB4O7(aq) at the molalities of (0.00556–0.03341) mol·kg?1 were measured with an Anton Paar Digital vibrating-tube densimeter at temperature intervals of 5 K from 283.15 to 363.15 K and 0.1 MPa. Apparent molar volumes were obtained based on the experimental density data, and the 3D diagrams of the apparent molar volume (V ? ) of MgB4O7(aq) against temperature (T) and molality (m) were plotted. On the basis of the Vogel–Tamman–Fulcher equation, the coefficients of the correlation equation for densities of MgB4O7(aq) against temperature and molality were parameterized. According to the Pitzer ion-interaction model of the apparent molar volume, the temperature correlation equations of Pitzer single-salt parameters F(i,p,T)?=?a0?+?a1?×?T?+?a2?×?T 2?+?a3/T?+?a4?×?ln(T)?+?a5?×?T 3 (where T is temperature in Kelvin, a i are model parameters) for MgB4O7 were obtained for the first time.  相似文献   

3.
Orthovanadate ErVO4 has been prepared by solid-phase synthesis from a stoichiometric mixture of high pure V2O5 and chemically pure Er2O3 by multistage calcination in air in the temperature range 873–1273 K. The effect of temperature (380–1000 K) on the heat capacity of orthovanadate ErVO4 was studied by hightemperature calorimetry. Thermodynamic properties of erbium orthovanadate (enthalpy change H°(T)–H°(380 K), entropy change S°(T)–S°(380 K), and reduced Gibbs energy Φ°(T)) have been calculated from the experimental Cp = f(T) data. It has been shown that the specific heat varies in a row of oxides and orthovanadates of Gd-Lu naturally depending on the radius of the R3+ ion within the third and fourth tetrads.  相似文献   

4.
Stannates Dy2Sn2O7 and Ho2Sn2O7 are produced by solid-phase synthesis from Dy2O3 (Ho2O3)–SnO2 stoichiometric mixtures by calcining at 1473 K. The molar heat capacity of holmium and dysprosium stannates is measured by differential scanning calorimetry (DSC) in the temperature range 370–1000 K. The experimental data are used to calculate thermodynamic properties (enthalpy change H°(T)–H°(370 K), entropy change S°(T)–S°(370 K), and the reduced Gibbs free energy Φ°(T)) of the synthesized compound.  相似文献   

5.
The reaction on 8-hydroxy quinoline-7-aldehyde azo compounds (HL n ) (where n = 1–5) with 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one to obtain HL n (where n = 6–10) have been characterized by means of TLC, melting point and spectral data, such as IR, 1H NMR, mass spectra and thermal studies. The X-ray diffraction patterns of two starting materials 8-hydroxy quinoline-7-aldehyde (start 1), 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (start 2) and the ligands (HL5,10) are investigated in powder form. All the ligands have been screened for their antimicrobial activity against four local bacterial species, two Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) as well as against four local fungi; Aspergillus niger, Alternaria alternata, Penicillium italicum and Fusarium oxysporium. The results show that the azo ligands (HL n ) (where n = 1–5) have no antimicrobial activity against bacteria and fungi while most azomethine ligands (HL n ) (where n = 6–10) are good antibacterial agents against E. coli and K. pneumoniae as well as antifungal agents against P. italicum and A. alternata. The results were compared to standard substances (start 1) and (start 2). Among the azomethine ligands, HL10 was the most effective against the most microorganisms tested. The size of clear zone was ordered as p-(OCH3 < CH3 < H < Cl < NO2) as expected from Hammett’s constant (σ R ). Also, the ultrastructure study of the affected bacteria confirmed that HL8 is good antibacterial agent against E. coli and S. aureus.  相似文献   

6.
Oxygen surface exchange kinetics and diffusion were studied in Pr2NiO4?+?δ (PNO) by the isotope exchange method with gas phase equilibration in the temperature range of 600–800 °C and oxygen pressure range of 0.33–1.62 kPa. The oxygen heterogeneous exchange rate (rH), oxygen diffusion coefficient (D), rates of oxygen dissociative adsorption (ra), and oxygen incorporation (ri) were calculated along with the apparent activation energies of oxygen surface exchange and diffusion processes. The temperature dependence of rH was found to benon-linear in Arrhenius coordinates. The apparent activation energy changed from 1.4?±?0.2 eV at T?>?700 °C to 2.0?±?0.1 eV. This might be attributed to the change in the rate-determining stage of oxygen exchange for Pr2NiO4?+?δ at T ~?700 °C, because of a shift in the ratio between ra and ri caused by the difference in their activation energies. Possible reasons for the observed changes in the rate-determining stage are discussed.  相似文献   

7.
The temperature dependence of heat capacity C° p = f(T) of crystalline arsenate Mg0.5Zr2(AsO4)3 was studied by precision adiabatic vacuum and differential scanning calorimetry in the temperature range 8?670 K. The standard thermodynamic functions C° p (T), H°(T)–H°(0), S°(T), and G°(T)–H°(0) of the arsenate for the range from Т → 0 to 670 K and the standard formation entropy at Т = 298.15 K were calculated from the obtained experimental data. Based on the low-temperature capacity data (30–50 K) the fractal dimension D of the arsenate was determined, and the topology of its structure was characterized. The results were compared with the thermodynamic data for the structurally related crystalline phosphates M0.5Zr2(PO4)3 (M = Mg, Ca, Sr, Ba, Ni) and arsenate NaZr2(AsO4)3.  相似文献   

8.
The isolated polystyrene chains spin-labeled with peroxide radical at the free end (IPSOO) in which the chain roots were covalently bonded to the surface of microcrystalline cellulose (MCC) powder were produced by mechanochemical polymerization of styrene initiated by MCC mechanoradicals. The IPSOO was used as motional probes at the ends of isolated polystyrene chains tethered on the surface of MCC powder. Two modes for the molecular motion of IPSOO were observed. One was a tumbling motion of IPSOO on the MCC surface, defined as a train state, and another was a free rotational motion of IPSOO protruding out from the MCC surface, defined as a tail state. The temperature of tumbling motion (T tum ) of IPSOO at the train state was at 90 K with anisotropic correlation times. T tum (90 K) is extremely low compared to the glass transition temperature (T g b ; 373 K) of polystyrene in the bulk. At temperatures above 219 K, the IPSOO was protruded out from the MCC surface, and freely rotated at the tail state. The train–tail transition temperature (T traintail ) was estimated to be 222 K. T tum (90 K) and T traintail (222 K) are due to the extremely low chain segmental density of IPSOO on the MCC surface under vacuum. The interaction between IPSOO and the MCC surface is a minor contributing factor in the mobility of IPSOO on the surface under vacuum. It was found that peroxy radicals are useful probes to characterize the chain mobility reflecting their environmental conditions.  相似文献   

9.
Relations for the apparent molar heat capacity ?c of urea in an aqueous solution depending on the molality m and temperature were obtained. A transition to the relations ?c(m,T) for D2O-(ND2)2CO and T2O-(NT2)2CO systems was effected by temperature scaling. At low temperatures, the isotherms of the molar heat capacity C p(m) of the protium and deuterium systems have minima shifted to more dilute solutions at elevated temperatures. At m = 1, C p of a solution does not depend on temperature in both systems. The dependences C p(T) also have minima at constant concentrations. The temperature of the minimum heat capacity is most effectively lowered by small additions of urea. For m = 0.25, T min is 7.5 K lower than T min of pure water, and its heat capacity is 0.08 J/(mol K) higher. A transition from m = 1.5 to m = 2 lowers the temperature of the minimum heat capacity by 3.6 K; thus, the heat capacity of solutions differs by 0.02 J/(mol K) only.  相似文献   

10.
Heat capacity of NdVO4 was determined in the temperature range of 384–859 K using differential scanning calorimetry. The thermodynamic functions (H°(T)–H°(384 K), S°(T)–S°(384 K), and Φ°) of neodymium orthovanadate were calculated using the experimental Cp = f(T) values. The structure of NdVO4 was studied at 298 and 973 K.  相似文献   

11.
A complex of copper perchlorate coordinated with imidazole Cu(C3N2H4)4(ClO4)2 was synthesized and characterized by X-ray single-crystal diffraction. The complex is centrosymmetric in the monoclinic P2(1)/c space group. The low-temperature molar heat capacities and thermodynamic properties of the complex were studied with adiabatic calorimetry (AC). The thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the temperature range from 80 to 370 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The mechanism of the decomposition was deduced to be the breaking up the two Cl–O bonds of the Cl–O–Cu and the Cu–N bonds of the imidazole rings in succession.  相似文献   

12.
Potassium hydrogen bis-dichloroacetate (1) was synthesized and separated as crystals. Differential scanning calorimetry (DSC) measurement reveals that this compound undergoes a reversible phase transition at about 259 K with a heat hysteresis of 23.5 K. Dielectric anomaly observed at 260 K in the heating process further confirms the phase transition. The room temperature X-ray single-crystal structure determination indicates that 1 crystallizes in the monoclinic crystal system with a centrosymmetric space group P21/c, and cell parameters are a =?6.240(1), b =?23.177(4), c =?7.335(1) Å, β =?106.938(1)°, V =?1014.8(3) Å3, and Z =?4. In the low temperature phase, 1 also crystallizes in monolinic with space group P21/c, and cell parameters are a =?6.180(1), b =?22.988(2), c =?7.200(1) Å, β =?108.098(1)°, V =?972.4(1) Å3, and Z =?4. The structural phase transition is dominating caused by the torsion of bond angles.  相似文献   

13.
Temperature dependences of the heat capacity of new zincate-manganites of LaM2IIZnMnO6 (MII = Mg, Ca, Sr, Ba) composition are studied via experimental calorimetry in the interval of 298.15–673 K. It is found that all compounds have λ-shape effects on the curve of dependence Cp° ~ ?(T) with respect to phase transitions of the second kind. Equations for the temperature dependence of the heat capacity are derived with allowance for phase transition temperatures, and thermodynamic functions H°(T) ? H°(298.15), S°(T) and Φxx(T) are calculated on the basis of experimental data on Cp°(T) and the calculated S°(298.15) value.  相似文献   

14.
In an attempt to find single-source precursors, a series of small clusters of inorganic azides of indium (Br2InN3) n (n = 1–6) were studied using the dispersion correction density functional theory (wB97XD). The obtained (Br2InN3) n (n = 2–6) clusters have the core structures of 2n-membered ring with alternating indium and α-nitrogen atoms. The influences of cluster size (oligomerization degree n) on the structures, energies, IR spectra, and thermodynamic properties of clusters were discussed. The computed binding energies indicate the stability: 3A > 3B, 4B > 4C > 4A > 4D, 5E > 5D > 5B = 5C > 5A and 6I > 6C > 6D > 6G ≥ 6H > 6F > 6E > 6B > 6A. It is also found that (Br2InN3)2 and (Br2InN3)4 clusters possess higher stability than their neighbor sizes judged by the calculated second-order difference of energies (Δ2 E). Meanwhile, thermodynamic properties for (Br2InN3) n (n = 1–6) clusters increase with the increasing temperature and oligomerization degree n, and the oligomerizations are thermodynamically favorable at temperatures up to 800 K.  相似文献   

15.
The densities, ρ, and refractive indices, n D, of 2-alkanols (C3–C5) with N-propylamine have been measured for the whole range of composition at temperatures from (298.15–328.15) K at 10 K intervals and ambient pressure of 81.5 kPa, using an Anton Paar DMA 4500 oscillating tube densimeter and an Anton Paar Abbemat 500 automatic refractometer. From the experimental data, excess molar volumes \( V_{\text{m}}^{\text{E}} \) partial molar volumes \( \bar{V}_{i} \) apparent molar volumes V ?i and refractive index deviations Δn D the binary systems consisting of N-propylamine + 2-alkanols (2-propanol, 2-butanol, 2-pentanol) were calculated and \( V_{\text{m}}^{\text{E}} \) and Δn D values were correlated with the RedlichKister polynomial. The effect of temperature and the chain length of the alcohol on the excess molar volumes and refractive index deviations are discussed in terms of molecular interaction between unlike molecules. The excess molar volumes are negative and refractive index deviations are positive over the entire composition range, which indicates strong hydrogen bonding between molecules of the mixtures. A comparative study has been made of the refractive indices obtained experimentally and those calculated by means of the LorentzLorenz, Weiner and Arago–Biot relations. The perturbed chain statistical associating fluid theory (PC-SAFT), simplified PC-SAFT and Prigogine–Flory–Patterson theory were also applied to correlate and predict the density and excess molar volumes of the mixtures.  相似文献   

16.
The temperature dependence of the heat capacity of triphenylantimony dibenzoate Ph3Sb(OC(O)Ph)2 is studied in the range of 6–480 K by means of precision adiabatic vacuum calorimetry and differential scanning calorimetry. The melting of the compound is observed in this temperature range, and its standard thermodynamic characteristics are identified and analyzed. Ph3Sb(OC(O)Ph)2 is obtained in a metastable amorphous state in a calorimeter. The standard thermodynamic functions of Ph3Sb(OC(O)Ph)2 in the crystalline and liquid states are calculated from the obtained experimental data: Cp°(T), H°(T)–H°(0), S°(T), and G°(T)–H°(0) for the region from T → 0 to 480 K. The standard entropy of formation of the compound in the crystalline state at T = 298.15 K is determined. Multifractal processing of the low-temperature (T < 50 K) heat capacity of the compound is performed. It is concluded that the structure of the compound has a planar chain topology.  相似文献   

17.
The heat capacity and the temperatures and enthalpies of physical transformations of the alternating terpolymer of carbon monoxide, ethylene, and 1-butene (the content of butene units is 10.7 mol.%) were studied by adiabatic and differential scanning calorimetry in the temperature range from 6 to 520 K. The energy of terpolymer combustion was measured at 298.15 K on an calorimeter with an isothermal shell and static bomb. The standard thermodynamic functions C°p(T), H°(T)–H°(0), S°(T)–S°(0), and G°(T)–H°(0) for the range from Т → 0 to 400 K, the standard enthalpy of combustion, and the thermodynamic parameters of formation of the partially crystalline CO—ethylene—1-butene terpolymer at 298.15 K, as well as the thermodynamic characteristics of its synthesis in the range from T → 0 to 400 K were calculated.  相似文献   

18.
Structure and dynamics of a free aquaporin (AQP1) are studied by a coarse-grained Monte Carlo simulation as a function of temperature using a phenomenological potential with the input of a knowledge-based residue–residue interaction. Response of the radius of gyration (R g) of the protein to the temperature (T) is found to be nonlinear: Decay of R g at T ≤ T c is followed by a continuous increase at T ≥ T c before reaching its saturation. In thermo-responsive regime, the protein exhibits segmental globularization with the persistence of three regions along its sequence involving residues 1M–25V and 250V–269K toward the beginning and end segments with a narrow intermediate region around 155A–163D. A detail analysis of the structure factor S(q) shows a global random coil conformation at high temperatures with an effective dimension D e ~ 1.74 and a globular structure (D e ~ 3) at low temperatures. In thermo-responsive regime, the variation of S(q) with the wave vector q reveals a systematic redistribution of self-organizing residues (in globular and fibrous sections) that depends on the length scale and the temperature.  相似文献   

19.
The quantum mechanics of a diatomic molecule in a noncentral potential of the type V (r) = V θ (θ)/r 2 + V r (r) are investigated analytically. The θ-dependent part of the relevant potential is suggested for the first time as a novel angle-dependent (NAD) potential \({V_{\theta}(\theta)=\frac{\hbar^2}{2\mu}\left(\frac{\gamma +\beta \sin^2\theta +\alpha \sin^4 \theta}{\sin^2\theta \cos^2\theta}\right)}\) and the radial part is selected as the Coulomb potential or the harmonic oscillator potential, i.e., V r (r) =  ? H/r or V r (r) = Kr 2, respectively. Exact solutions are obtained in the Schrödinger picture by means of a mathematical method named the Nikiforov–Uvarov (NU). The effect of the angle-dependent part on the solution of the radial part is discussed in several values of the NAD potential’s parameters as well as different values of usual quantum numbers.  相似文献   

20.
Guanidine dichloroacetate was synthesized and separated as crystals. Differential scanning calorimetry (DSC) measurement shows that this compound undergoes a reversible phase transition at about 275 K with a heat hysteresis of 28 K. Step-like dielectric anomaly observed at 274 K further confirms the phase transition. The single-crystal X-ray diffraction data suggested that these was a transition from a room-temperature phase with the space group of P21/n (a = 8.030(5), b = 12.014(9), c = 8.124(6) Å, β = 96.089(1)°, V = 779.3(1) Å3, and Z = 4) to a low-temperature one with the space group of P21/c (a = 7.941(2), b = 11.828(3), c = 10.614(2) Å, β = 130.985(1)°, V = 752.6(3) Å3, and Z = 4). The displacements of hydrogen bonds induce the structure phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号