首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of amine-functionalized silica sorbents prepared through the incipient wetness technique with primary, secondary, and tertiary amino organosilanes was investigated. The prepared sorbents were exposed to different gaseous streams including CO2/N2, dry CO2/air with varying concentration, and humid CO2/air mixtures to demonstrate the effect of the gas conditions on the CO2 adsorption capacity and the stability of the different amine structures. The primary and secondary amine-functionalized adsorbents exhibited CO2 sorption capacity, while tertiary amine adsorbent hardly adsorbed any CO2. The secondary amine adsorbent showed better stability than the primary amine sorbent in all the gas conditions, especially dry conditions. Deactivation species were evaluated using FT-IR spectra, and the presence of urea was confirmed to be the main deactivation product of the primary amine adsorbent under dry condition. Furthermore, it was found that the CO2 concentration can affect the CO2 sorption capacity as well as the extent of degradation of sorbents.  相似文献   

2.
In the present research, CO2 and SO2 binding ability of different oil shale ashes and the effect of pre-treatment (grinding, preceding calcination) of these ashes on their binding properties and kinetics was studied using thermogravimetric, SEM, X-ray, and energy dispersive X-ray analysis methods. It was shown that at 700 °C, 0.03–0.28 mmol of CO2 or 0.16–0.47 mmol of SO2 was bound by 100 mg of ash in 30 min. Pre-treatment conditions influenced remarkably binding parameters. Grinding decreased CO2 binding capacities, but enhanced SO2 binding in the case of fluidized bed ashes. Grinding of pulverized firing ashes increased binding parameters with both gases. Calcination at higher temperatures decreased binding parameters of both types of ashes with both gases studied. Clarification of this phenomenon was given. Kinetic analysis of the binding process was carried out, mechanism of the reactions and respective kinetic constants were determined. It was shown that the binding process with both gases was controlled by diffusion. Activation energies in the temperature interval of 500–700 °C for CO2 binding with circulating fluidized bed combustion ashes were in the range of 48–82 kJ mol−1, for SO2 binding 43–107 kJ mol−1. The effect of pre-treatment on the kinetic parameters was estimated.  相似文献   

3.
I will trace the little known prehistory and parts of the better known history of CO2 by investigating some of the names it has been given from Antiquity to the present day. In Antiquity, the words pneuma or spiritus letalis designated both a supernatural force and an exhalation that emanated from certain caves. We will see how CO2 gradually came to be regarded as something natural, a gas and then substance.  相似文献   

4.
Cu/Al layered double hydroxide (LDH) can be used as a catalyst for important processes such as cross-coupling reactions. This property may be improved by adding palladium by either impregnation or intercalation. Therefore, the LDH matrix and its composites with Pd0 or [PdCl4]2? have been prepared. By powder X-ray diffraction, FT-infrared spectroscopy, thermogravimetric and elemental analysis it was determined the LDH formula Cu4Al2(OH)12CO3.4H2O, with malachite as the second phase. The LDH thermal decomposition occurs between 120 and 600 °C, having as intermediates the double oxi-hydroxide and the mixed oxide phases. At 800 °C the residue is composed of CuO and CuAl2O4. The composites were obtained employing [PdCl4]2? and Pd2(dba)3 as precursors, and the solvent choice for this process was shown to be of significant importance: the materials obtained using DMF had Pd impregnated in the surface, while the usage of water promoted the intercalation of [PdCl4]2? in the LDH matrix. The thermogravimetric analysis was able to distinguish the mode of supporting palladium between the composites being a reliable characterization for such task.  相似文献   

5.
At present, carbon dioxide is considered the largest contributor among greenhouse gases. This review covers the current state of problem of carbon dioxide emissions from industrial and combustion processes, the principle of photocatalysis, existing literature related to photocatalytic CO2 reduction over TiO2 based catalysts and the effects of important parameters on the process performance including light wavelength and intensity, type of reductant, metal-modified surface, temperature and pressure. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

6.
As a base-promoted Kolbe–Schmitt carboxylation reaction, the mechanism of synthesis of salicylic acid derivatives from phenols with CO2 in the industry is still unclear, even up to now. In this paper, synthesis of 3,6-dichloro salicylic acid (3,6-DCSA) from 2,5-dichloro phenoxide and CO2 was investigated in the presence of K2CO3. We show the reaction can proceed by itself, but it goes at a slower rate as well as a lower yield, compared to the case with the addition of K2CO3. However, the yield of 3,6-DCSA is only minorly affected by the size of K2CO3, which cannot be explained from the view of catalytic effect. Therefore, K2CO3 may on one hand act as a catalyst for the activation of CO2 so that the reaction can be accelerated, while on the other hand, it also acts as a co-reactant in deprotonating the phenol formed by the side reaction to phenoxide, which is further converted to salicylate.  相似文献   

7.
This is the first study of the NaBO2-Na2CO3-Na2MoO4-Na2WO4 quaternary system by differential thermal analysis. Na2[MoO4(x)WO4(1 − x)] solid solutions in the quaternary system are found to not decompose.  相似文献   

8.
Coordination polymers [AgCF3CO2(2,3-Et2Pyz)](I)(2,3-Et2Pyz-C8H12N2) and [AgCF3CO2(Bpeta)] (II) (Bpeta is 4′4-bipyridylethane, C12H12N2) are synthesized. Their structures are determined. The crystals of compound I are monoclinic, space group P2(1)/n, a = 7.185(1), b = 14.754(1), c = 12.317(1)Å, β = 97.09(1)°, V = 1295.7(2) Å3, ρcalcd = 1.831 g/cm3, Z = 4. Structure I consists of infinite chains of doubled polymeric chains joined by silver carboxylate dimers [[Ag2(CF3CO2)2(Et2Pyz)2]. The coordination polyhedron of Ag+ is a distorted tetrahedron. The crystals of compound II are orthorhombic, space group Pbca, a = 13.555(3), b = 13.991(3), c = 16.449(3) Å, V = 3119.5(11) Å3, ρcalcd = 1.725 g/cm3, Z = 8. Doubled polymeric chains with the Ag…Ag bond (3.16 Å) are also formed in structure II. Supramolecular layers are formed in the structure due to the weak π-π-stacking interaction between the aromatic groups of chains. The CF3CO 2 ? anion is weakly bound to Ag+ (Ag-Oavg 2.790 Å).  相似文献   

9.
10.
Be2(OH)2CO3 solubilities at 25°C in 0.7 M NaClO4 solutions containing variable NaHCO3 and Na2CO3 concentrations has been experimentally determined. The solubilities increase with increasing carbonate alkalinity. The results of the experiments do not contradict the suggestion that the mixed hydroxocarbonate complex Be2(OH)2CO 3 2? is the major beryllium solute species. At fluoride concentrations higher than 250 μmol/L, the Be2(OH)2CO3 solubilities noticeably increase as a result of the formation of beryllium fluoride complexes.  相似文献   

11.
Experimental results on the interaction of Cr atoms with various oxygen-containing molecules (NO, N2O, CO2, NO2, and SO2) at high temperatures (>1000 K) are presented. It is demonstrated that activation barrier for spin-forbidden reactions is higher, all other things being equal. For the reaction of Cr atoms with N2O, an interpolated temperature dependence of the rate constant, based on the high-temperature measurements conducted in the present work and the published low-temperature data, is proposed.  相似文献   

12.
Carbon dioxide was considered as a co-gasifying agent in a coal gasification reactor. The work presented herein describes the simulation results for the process and the experimental data on coal char gasification with CO2 addition as the rate-controlling step for the entire process. To study the potentially beneficial effect of the introduction of CO2 into the gasification system, several simulations were conducted using the commercial process simulation software ChemCAD 6.3®. The results of a Gibbs equilibrium reactor were evaluated. The Boudouard reaction is a critical path for the development of this process, and the kinetics were studied experimentally. Four chars derived from the pyrolysis of Polish coals of different origins were selected for the experiments. The kinetic characteristics of this system were examined using a custom-designed pressurized fixed-bed reactor. To determine the effect of pressure on the gasification rate, several preliminary studies on the gasification of coal chars were performed isothermally at the temperature of 950 °C and pressures of 1, 10, and 20 bars. In contrast to the thermodynamic calculations, the experimental data revealed that increasing the CO2 pressure leads to a higher reaction rate for medium-rank coal chars and low-rank lignite coal char, resulting in higher efficiency for carbon monoxide production. The pressure influences the reactivity more strongly when varied from 1 to 10 bars; a further increase in pressure affects the rate almost insignificantly. The observed behavior representing the changes in carbon conversion degree during gasification is satisfactorily described by the grain model.  相似文献   

13.
Dry potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as activated carbon (AC), TiO2, Al2O3, MgO, CaO, SiO2 and various zeolites. The CO2 capture capacity and regeneration property of various sorbents were measured in the presence of H2O in a fixed bed reactor, during multiple cycles at various temperature conditions (CO2 absorption at 50–100 °C and regeneration at 130–400 °C). The KAlI30, KCaI30, and KMgI30 sorbents formed new structures such as KAl(CO3)2(OH)2, K2Ca(CO3)2, K2Mg(CO3)2, and K2Mg(CO3)2·4(H2O), which did not completely convert to the original K2CO3 phase at temperatures below 200 °C, during the CO2 absorption process in the presence of 9 vol.% H2O. In the case of KACI30, KTiI30, and KZrI30, only a KHCO3 crystal structure was formed during CO2 absorption. The formation of active species, K2CO3·1.5H2O, by the pretreatment with water vapor and the formation of the KHCO3 crystal structure after CO2 absorption are important factors for absorption and regeneration, respectively, even at low temperatures (130–150 °C). In particular, the KTiI30 sorbent showed excellent characteristics with respect to CO2 absorption and regeneration in that it satisfies the requirements of a large amount of CO2 absorption (87 mg CO2/g sorbent) without the pretreatment with water vapor, unlike KACI30, and a fast and complete regeneration at a low temperature condition (1 atm, 150 °C). In addition, the higher total CO2 capture capacity of KMgI30 (178.6 mg CO2/g sorbent) than that of the theoretical value (95 mg CO2/g sorbent) was explained through the contribution of the absorption ability of MgO support. In this review, we introduce the CO2 capture capacities and regeneration properties of several potassium-based sorbents, the changes in the physical properties of the sorbents before/after CO2 absorption, and the role of water vapor and its effects on CO2 absorption.  相似文献   

14.
This study proposes changes to the design and evaluation of the CO2 headspace test, which is used as a simple method for assessment of the complete biodegradability of surfactants. It presents a modified equation for the calculation of biodegradation. It is proposed that the solution of 7 mol L?1 sodium hydroxide commonly used in the process involving alkalinisation of the vial contents be replaced with 15 mol L?1 sodium hydroxide. The use of the higher hydroxide concentration leads to a significant reduction in the value of the blank CO2 headspace test.  相似文献   

15.
This experimental study of phase equilibria in the K2SO4-K2CO3-H2O system at 385–500°C and pressures up to 100 MPa is directed to determine the sequence of phase transformations that generate heterogeneous supercritical fluids from the homogeneous one; the homogeneous supercritical region spreads into the ternary system from the K2SO4-H2O subsystem. We found that heterogenization of supercritical fluid upon addition of K2CO3 starts with l1=l2 critical phenomena in solid saturated solutions and is attended by amalgamation of the stable immiscibility region that spreads from the K2CO3-H2O system with the metastable immiscibility region that originates from the K2SO4-H2O system. Our experimental results and the topological analysis of phase equilibria at temperatures above the critical point of water gave us the full scenario of the phase behavior of the title ternary system in the regions of fluid equilibria, g=l and l1=l2 critical phenomena, and liquid-liquid phase separation in two-, three-, and four-phase equilibria.  相似文献   

16.
Adsorption of CO2, N2, CH4 and H2 on triamine-grafted pore-expanded MCM-41 mesoporous silica (TRI-PE-MCM-41) was investigated at room temperature in a wide range of pressure (up to 25 bar) using gravimetric measurements. The material was found to exhibit high affinity toward CO2 in comparison to the other species over the whole range of pressure. Column-breakthrough dynamic measurements of CO2-containing mixtures showed very high selectivity toward CO2 over N2, CH4 and H2 at CO2 concentrations within the range of 5 to 50%. These conditions are suitable for effective removal of CO2 at room temperature from syngas, flue gas and biogas using temperature swing (TS) or temperature-pressure swing (TPS) regeneration mode. Moreover, TRI-PE-MCM-41 was found to be highly stable over hundreds of adsorption-desorption cycles using TPS as regeneration mode.  相似文献   

17.
The increasingly evident impact of anthropogenic CO2 emissions on climate change and associated environmental effects is stimulating the search for viable methods to remove this gas. One of the most promising strategies is the long-term storage of CO2 in inert, insoluble and thermodynamically-stable materials. This strategy mimics the natural reactions that transform silicates into carbonates regulating the cycle of CO2 on the surface of the Earth, operating on a geological time-scale. Consequently, the aim is to accelerate these reactions to be applicable on the timescale of human lives. We present the various technologies developed or proposed to date, based on this particular approach. The principal limiting factor is that high pressures and temperatures are required to produce appropriate materials capable of CO2 sequestration and storage. Nevertheless, the synthetic materials known as aerogels can be modified in shape, size and chemical functionality so as to catalyse the process of CO2 elimination through silicates (of Ca or Mg), considerably reducing the reaction time and working at atmospheric pressure and temperature.  相似文献   

18.
Potassium-based sorbents using γ-Al2O3 or TiO2 as a support or an additive material have disadvantages in terms of their thermal stability and cyclic CO2 capture. To overcome the shortcomings of these sorbents, a novel potassium-based sorbent (KSnI30) using SnO2 was developed in this study. The KSnI30 sorbent formed only K2CO3 and SnO2 phases without any inactive alloy species even after calcination at high temperatures (500–700 °C), indicating the good thermal stability of the KSnI30 sorbent regardless of the calcination temperature. Furthermore, the KSnI30 sorbent has an excellent regeneration property (above 98 %), as well as high CO2 capture capacities (89–94 mg CO2/g sorbent). Its excellent regeneration property is due to the formation of a KHCO3 phase without by-products during CO2 sorption. These results of the present study demonstrate that the SnO2 shows promise as a new support or an additive material to replace TiO2 and γ-Al2O3 in the preparation of a regenerable potassium-based sorbent for post-combustion CO2 capture with good thermal stability and excellent regeneration property.  相似文献   

19.
20.
A single-step novel protocol for the preparation of symmetrical trithiocarbonates from a corresponding variety of primary, secondary, and tertiary alcoholic tosylates using the Cs2CO3/CS2 system, was developed. This protocol is mild and more efficient than the reported methods. Correspondence: Devdutt Chaturvedi, Bio-Organic Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi-18000, J&K, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号