首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 Introduction In recent years, the effects of reactive oxygen species(ROS) generated in the course of biological metabolism, such as superoxide(O_2~(-.)), hydrogen peroxide(H_2O_2), hydroxyl radical(HO~.) and singlet oxygen(~1O_2) on the human health have received more attention due to their vital roles in physiological functions. Normally, antioxidant molecules, superoxide dismutase and catalase in biological organism can scavenge excessive free radicals by a series of chemical reactions to keep the cells in a state of redox homeostasis[1].  相似文献   

2.
Melatonin (MT) is a pleiotropic molecule with diverse and numerous actions both in plants and animals. In plants, MT acts as an excellent promotor of tolerance against abiotic stress situations such as drought, cold, heat, salinity, and chemical pollutants. In all these situations, MT has a stimulating effect on plants, fomenting many changes in biochemical processes and stress-related gene expression. Melatonin plays vital roles as an antioxidant and can work as a free radical scavenger to protect plants from oxidative stress by stabilization cell redox status; however, MT can alleviate the toxic oxygen and nitrogen species. Beyond this, MT stimulates the antioxidant enzymes and augments antioxidants, as well as activates the ascorbate–glutathione (AsA–GSH) cycle to scavenge excess reactive oxygen species (ROS). In this review, we examine the recent data on the capacity of MT to alleviate the effects of common abiotic soil stressors, such as salinity, alkalinity, acidity, and the presence of heavy metals, reinforcing the general metabolism of plants and counteracting harmful agents. An exhaustive analysis of the latest advances in this regard is presented, and possible future applications of MT are discussed.  相似文献   

3.
Long-term aging of dry DNA is thought to be due to the attack of diverse cascades of reactive species with probably, no one single initiator of the cascades explaining all circumstances. Photosensitizer-initiated reactions from methylene blue and riboflavin were used to generate two model systems of reactive species around dry DNA in order to understand such systems and how to block them. Damage was assessed using plasmid DNA as a substrate with an in-situ microgel electrophoretic technique. Photodynamic methylene blue damage to DNA was very oxygen dependent but not that of riboflavin. This indicates that indirect type II pathways, probably via singlet oxygen were important for methylene blue but not for riboflavin. In both the absence and presence of oxygen, the DNA protection offered by dry caffeine and urate to both photodynamic agents indicated that most DNA attack was via electrophilic species. Overall, protection of dry archived DNA from spontaneously reactive species such as free radicals appears to be a real issue and, as expected, the predominant species in air appear to involve oxygen but not exclusively or necessarily so.  相似文献   

4.

Oxidative stress is considered as an imbalance of reactive species over antioxidants, leading to diseases and cell death. Various methods have been developed to determine the antioxidant potential of natural or synthetic compounds based on the ability to scavenge free radicals. However, most of them lack biological relevance. Here, a gold-based self-assembled monolayer (SAM) was compared with a gold-supported lipid bilayer as models for the mammalian cell membrane to evaluate the free radical scavenging activity of different antioxidants. The oxidative damage induced by reactive species was verified by cyclic and differential pulse voltammetry and measured by the increase of electrochemical peak current of a redox probe. Trolox, caffeic acid (CA), epigallocatechin gallate (EGCG), ascorbic acid (AA), and ferulic acid (FA) were used as model antioxidants. The change in the decrease of the electrochemical signal reflecting oxidative membrane damage confirms the expected protective role. Both model systems showed similar efficacies of each antioxidant, the achieved order of radical scavenging potential is as follows: Trolox > CA > EGCG > AA > FA. The results showed that the electrochemical assay with SAM-modified electrodes is a stable and powerful tool to estimate qualitatively the antioxidative activity of a compound with respect to cell membrane protection against biologically relevant reactive species.

  相似文献   

5.
Oxidative stress induced by reactive oxygen species (ROS) is one of the critical factors that involves in the pathogenesis and progression of many diseases. However, lack of proper techniques to scavenge ROS depending on their cellular localization limits a thorough understanding of the pathological effects of ROS. Here, we demonstrate the selective scavenging of mitochondrial, intracellular, and extracellular ROS using three different types of ceria nanoparticles (NPs), and its application to treat Parkinson's disease (PD). Our data show that scavenging intracellular or mitochondrial ROS inhibits the microglial activation and lipid peroxidation, while protecting the tyrosine hydroxylase (TH) in the striata of PD model mice. These results indicate the essential roles of intracellular and mitochondrial ROS in the progression of PD. We anticipate that our ceria NP systems will serve as a useful tool for elucidating the functions of various ROS in diseases.  相似文献   

6.
Oxidative stress induced by reactive oxygen species (ROS) is one of the critical factors that involves in the pathogenesis and progression of many diseases. However, lack of proper techniques to scavenge ROS depending on their cellular localization limits a thorough understanding of the pathological effects of ROS. Here, we demonstrate the selective scavenging of mitochondrial, intracellular, and extracellular ROS using three different types of ceria nanoparticles (NPs), and its application to treat Parkinson's disease (PD). Our data show that scavenging intracellular or mitochondrial ROS inhibits the microglial activation and lipid peroxidation, while protecting the tyrosine hydroxylase (TH) in the striata of PD model mice. These results indicate the essential roles of intracellular and mitochondrial ROS in the progression of PD. We anticipate that our ceria NP systems will serve as a useful tool for elucidating the functions of various ROS in diseases.  相似文献   

7.
The demand for reduced chemical preservative usage is currently growing, and natural preservatives are being developed to protect seafood. With its excellent antibacterial properties, linalool has been utilized widely in industries. However, its antibacterial mechanisms remain poorly studied. Here, untargeted metabolomics was applied to explore the mechanism of Shewanella putrefaciens cells treated with linalool. Results showed that linalool exhibited remarkable antibacterial activity against S. putrefaciens, with 1.5 µL/mL minimum inhibitory concentration (MIC). The growth of S. putrefaciens was suppressed completely at 1/2 MIC and 1 MIC levels. Linalool treatment reduced the membrane potential (MP); caused the leakage of alkaline phosphatase (AKP); and released the DNA, RNA, and proteins of S. putrefaciens, thus destroying the cell structure and expelling the cytoplasmic content. A total of 170 differential metabolites (DMs) were screened using metabolomics analysis, among which 81 species were upregulated and 89 species were downregulated after linalool treatment. These DMs are closely related to the tricarboxylic acid (TCA) cycle, glycolysis, amino acid metabolism, pantothenate and CoA biosynthesis, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism. In addition, linalool substantially affected the activity of key enzymes, such as succinate dehydrogenase (SDH), pyruvate kinase (PK), ATPase, and respiratory chain dehydrogenase. The results provided some insights into the antibacterial mechanism of linalool against S. putrefaciens and are important for the development and application of linalool in seafood preservation.  相似文献   

8.
Vitamin A (retinol), an essential human nutrient, plays an important role in cellular differentiation, regulation of epidermal cell growth and normal cell maintenance. In addition to these physiological roles, vitamin A has a rich photochemistry. Photoisomerization of vitamin A, involved in signal transduction for vision, has been extensively investigated. The biological effects of light-induced degradation of vitamin A and formation of reactive species are less understood and may be important for light-exposed tissues, such as the skin. Photochemical studies have demonstrated that excitation of retinol or its esters with UV light generates a number of reactive species including singlet oxygen and superoxide radical anion. These reactive oxygen species have been shown to damage a number of cellular targets, including lipids and DNA. Consistent with the potential for damaging DNA, retinyl palmitate has been shown to be photomutagenic in an in vitro test system. The results of mechanistic studies were consistent with mutagenesis through oxidative damage. Vitamin A in the skin resides in a complex environment that in many ways is very different from the chemical environment in solution and in in vitro test systems. Relevant clinical studies or studies in animal models are therefore needed to establish whether the pro-oxidant activity of photoexcited vitamin A is observed in vivo, and to assess the related risks.  相似文献   

9.
The neuroprotective effect of ceria nanoparticles in the context of brain disorders has been explained by their antioxidant effect. However, the in‐depth mechanism remains unknown. As resident immune cells in the brain, microglia exert a variety of functional reprogramming termed as polarization in response to stress stimuli. Herein, custom‐made ceria nanoparticles were developed and found to scavenge multiple reactive oxygen species with extremely high efficiency. These nanoparticles drove microglial polarization from a pro‐inflammatory phenotype to an anti‐inflammatory phenotype under pathological conditions. Pretreatment of these nanoparticles changed the microglial function from detrimental to protective for the neuronal cells by blocking the pro‐inflammatory signaling. This work not only helps to elucidate the mechanism of ceria‐nanoparticle‐mediated neuroprotection but also provides a new strategy to rebalance the immuno‐environment by switching the equilibrium of the phenotypic activation of microglia.  相似文献   

10.
Direct detection of reactive oxygen species (ROS), especially singlet oxygen, in plants under stress conditions is of special importance, not only to identify primary events of oxidative damage, but also in studies exploring the potential role of ROS as signal molecules. Due to short life-times and diffusion distances of ROS, these tasks require highly reactive and selective indicator reagents, localized at the presumed site of production. In the present study, we compared four double sensors: ROS indicator reagents in which partial fluorescence quenching of a dansyl moiety occurs as a result of nitroxide radical formation from a sterically hindered amine constituent. Our experiments support the idea that shorter donor-acceptor distances within these molecules result in higher reactivity to ROS. The presence of a diethylaminoethyl side chain resulted in better selectivity to singlet oxygen: reagents lacking such substituent had an additional reactivity to superoxide anions, probably as a result of the formation of zwitterionic structures. Fluorescence localization studies of the indicator reagents in tobacco leaves and in Chlamydomonas cells show promising perspectives of their applications to plant stress studies.  相似文献   

11.
HO radical is an aggressive reagent to abstract hydrogen from diverse substitutes and lead them to degradation, however, in reaction of active oxygen species with lignins, complex phenolic polymers, in dispersed lignocellulose such as pulp for environment-benign delignification, HO radicals should be eliminated as more as possible to prevent cellulose from unfavorably concomitant degradation. A reaction system of O3 is constructed under UV laser flash irradiation, and HO radicals are controlled efficiently by it. A new mechanism is proposed, for the first time, that O radicals generated from reaction of O3 with UV laser flash irradiation might be the contributor to scavenge HO radicals.  相似文献   

12.
As a normal attribute of aerobic life, structural damage to organic compounds of a wide variety (DNA, proteins, carbohydrates and lipids) may occur as a consequence of oxidative reactions. Oxidative damage inflicted by reactive oxygen species has been called “oxidative stress”. Biological systems contain powerful enzymatic and nonenzymatic antioxidant systems, and oxidative stress denotes a shift in the prooxidant/antioxidant balance in favor of the former. Diverse biological processes such as inflammation, carcinogenesis, ageing, radiation damage and photobiological effects appear to involve reactive oxygen species. This field of research provides new perspectives in biochemical pharmacology, toxicology, radiation biochemistry as well as pathophysiology.  相似文献   

13.
Plants exposed to salt stress undergo biochemical and morphological changes even at cellular level. Such changes also include activation of antioxidant enzymes to scavenge reactive oxygen species, while morphological changes are determined as deformation of membranes and organelles. Present investigation substantiates this phenomenon for Caralluma tuberculata calli when exposed to NaCl stress at different concentrations. Elevated levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in NaCl-stressed calli dwindled upon application of non-enzymatic antioxidants; ascorbic acid (AA) and salicylic acid (SA). Many fold increased enzymes concentrations trimmed down even below as present in the control calli. Electron microscopic images accentuated several cellular changes upon NaCl stress such as plasmolysed plasma membrane, disruption of nuclear membrane, increased numbers of nucleoli, alteration in shape and lamellar membrane system in plastid, and increased number of plastoglobuli. The cells retrieved their normal structure upon exposure to non-enzymatic antioxidants. The results of the present experiments conclude that NaCl aggravate oxidative molecules that eventually alleviate antioxidant enzymatic system. Furthermore, the salt stress knocked down by applying ascorbic acid and salicylic acid manifested by normal enzyme level and restoration of cellular structure.  相似文献   

14.
Cyclodextrin(CD) has special spatial structure and well biological safety,so it has been widely used for constructing CD-based na noplatforms.Through functionalization,cyclodextrin can form various stimulusresponse nanoplatforms,such as pH,temperature,redox,light and magnetic fields.In this study,we designed a highly sensitive reactive oxygen species(ROS)-responsive polymer PCP which encapsulated doxorubicin(DOX) and purpurin 18(P18) to achieve the syne rgy of photodynamic and chemotherapy.The high content of reactive oxygen species(ROS) in the tumor microenvironment(TME) triggers the cleavage of the borate bond of MPEG-CD-PHB(PCP),thereby promoting the re lease of drugs.When irradiated with nea rinfrared laser,the photosensitizer P18 released by polymer micelles can produce reactive oxygen species to promote cell apoptosis.Compared with monotherapy,a series of experiments confirmed that our micelles had enhanced anti-cancer activity.This work was beneficial to the design of ROS-responsive materials and provides an effective strategy for the application of collaborative anti-tumor therapy.  相似文献   

15.
氧气常压介质阻挡放电的发射光谱及能量传递机理   总被引:2,自引:0,他引:2  
为研究氧气常压介质阻挡放电中的物理化学行为, 以纯氧作为放电体系, 用发射光谱(optical emission spectroscopy)诊断技术分析了等离子体中可能存在的化学活性物种. 利用在500-950 nm范围的氧原子发射光谱计算出等离子体中的电子温度为(1.02±0.03) eV; 观测了760 nm处的具有清晰转动结构的氧气A带(atmospheric band)O2(b1∑+g-X3∑-g), 并用其转动结构计算了转动温度(气体温度)为(650±20) K; 在500-700 nm范围观测了氧气的第一负带系(first negative system) O+2(b4∑-g-a4∏u), 在190-240 nm范围观测了微弱但特征清晰的氧气的Hopfield带系O+2(c4∑+u-b4∑-g). 研究发现, 在氧气常压介质阻挡放电等离子体中存在多种激发态氧原子、激发态氧气分子、基态和激发态氧气分子离子等反应活性物种, 这些活性物种的形成涉及氧气分子的激发、解离和电离等多种过程, 每个过程都包含多个能量传递步骤, 氧分子解离产生的氧原子是导致一系列高激发态氧原子生成和氧气电离激发的主要因素.  相似文献   

16.
In this paper, the role of reactive oxygen species in photoaging is presented. Many photosensitizing agents are known to generate reactive oxygen species (singlet oxygen (1O2), superoxide anion (O2.-) and .OH radicals). Although photoaging (dermatoheliosis) of human skin is caused by UVB and UVA radiation, the hypothesis tested here in the pathogenesis of photoaging of human skin is the free radical theory involving the generation of reactive oxygen species by UVA (320-400 nm) radiation and their damaging oxidative effects on cutaneous collagen and other model proteins. The UVA-generated reactive oxygen species cause cross-linking of proteins (e.g. collagen), oxidation of sulfydryl groups causing disulfide cross-links, oxidative inactivation of certain enzymes causing functional impairment of cells (fibroblasts, keratinocytes, melanocytes, Langerhans cells) and liberation of proteases, collagenase and elastase. The skin-damaging effects of UVA appear to result from type II, oxygen-mediated photodynamic reactions in which UVA or near-UV radiation in the presence of certain photosensitizing chromophores (e.g., riboflavin, porphyrins, nicotinamide adenine dinucleotide phosphate (NADPH), etc.) leads to the formation of reactive oxygen species (1O2, O2.-, .OH). Four specific observations are presented to illustrate the concept: (1) the production of 1O2 and O2.- by UVB, UVA and UVA plus photosensitizing agents (such as riboflavin, porphyrin and 3-carbethoxypsoralens) as a function of UV exposure dose, the sensitizer concentration and the pH of the irradiated solution; (2) the formation of protein cross-links in collagen, catalase and superoxide dismutase by 1O2 and O2.- (.OH) and the resulting denaturation of proteins and enzyme activities as a function of UVA exposure dose; (3) the protective role of selective quenchers of 1O2 and O2.- (e.g. alpha-tocopherol acetate, beta-carotene, sodium azide, ascorbic acid, etc.) against the photoinactivation of enzymes and the prevention of the protein cross-linking reaction; (4) the possible usefulness of certain antioxidants or quenchers that interact with the UVA-induced generation of reactive oxygen species in the amelioration of the process of photoaging.  相似文献   

17.
Rhinacanthus nasutus (L.) Kurz (Acanthaceae) is an herb native to Thailand and Southeast Asia, known for its antioxidant properties. Hypoxia leads to an increase in reactive oxygen species in cells and is a leading cause of neuronal damage. Cell death caused by hypoxia has been linked with a number of neurodegenerative diseases including some forms of dementia and stroke, as well as the build up of reactive oxygen species which can lead to diseases such as Huntington's disease, Parkinson's disease and Alzeheimer's disease. In this study we used an airtight culture container and the Mitsubishi Gas Company anaeropack along with the MTT assay, LDH assay and the trypan blue exlusion assay to show that 1 and 10 μg mL?1 root extract of R. nasutus is able to significantly prevent the death of HT-22 cells subjected to hypoxic conditions, and 0.1 to 10 μg mL?1 had no toxic effect on HT-22 under normal conditions, whereas 100 μg mL?1 reduced HT-22 cell proliferation. We also used H?DCFDA staining to show R. nasutus can reduce reactive oxygen species production in HT-22 cells.  相似文献   

18.
Curcumin (CUR) has a bright future in the treatment of cancer as a natural active ingredient with great potential. However, curcumin has a low solubility, which limits its clinical application. In this study, IRMOF-10 was created by the direct addition of triethylamine, CUR was loaded into IRMOF-10 using the solvent adsorption method, and the two were characterized using a scanning electron microscope (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) methods, and Brunauer–Emmett–Teller (BET) analysis. We also used the MTT method, 4′,6-diamidino-2-phenylindole (DAPI) staining, the annexin V/PI method, cellular uptake, reactive oxygen species (ROS), and the mitochondrial membrane potential (MMP) to perform a safety analysis and anticancer activity study of IRMOF-10 and CUR@IRMOF-10 on HepG2 cells. Our results showed that CUR@IRMOF-10 had a CUR load of 63.96%, with an obvious slow-release phenomenon. The CUR levels released under different conditions at 60 h were 33.58% (pH 7.4) and 31.86% (pH 5.5). Cell experiments proved that IRMOF-10 was biologically safe and could promote curcumin entering the nucleus, causing a series of reactions, such as an increase in reactive oxygen species and a decrease in the mitochondrial membrane potential, thereby leading to cell apoptosis. In summary, IRMOF-10 is an excellent drug carrier and CUR@IRMOF-10 is an effective anti-liver cancer sustained-release preparation.  相似文献   

19.
Decomposition of endoperoxide containing molecules is an attractive approach for the delayed release of singlet oxygen under mild reaction conditions. Here we describe a new method for the adaptation of the corresponding decay times by controlling the supramolecular functional structure of the surrounding matrix in the immediate vicinity of embedded singlet oxygen precursors. Thus, a significant prolongation of the lifetime of the endoperoxide species is possible by raising the energy barrier of the thermal (1)O(2)-releasing step via a restriction of the free volume of the applied carrier material. Enabling such a prolonged decomposition period is crucial for potential biomedical applications of endoperoxide containing molecules, since sufficient time for appropriate cell uptake and transport to the desired target region must be available under physiological conditions before the tissue damaging-power of the reactive oxygen species formed is completely exhausted. Two novel polyaromatic systems for the intermediate storage and transport of endoperoxides and the controlled release of singlet oxygen in the context of anticancer and antibiotic activity have been prepared and characterized. These compounds are based on functionalized derivatives of the 1,4-dimethylnaphthalene family which are readily forming metastable endoperoxide species in the presence of dioxygen, a photosensitizer molecule such as methylene blue and visible light. In contrast to previously known systems of similar photoreactivity, the endoperoxide carrying molecules have been designed with optimized molecular properties in terms of potential chemotherapeutic applications. These include modifications of polarity to improve their incorporation into various biocompatible carrier materials, the introduction of hydrogen bonding motifs to additionally influence the endoperoxide decay kinetics, and the synthesis of bifunctional derivatives to enable synergistic effects of multiple singlet oxygen binding sites with an enhanced local concentration of reactive species. With these compounds, a promising degree of endoperoxide stability adjustment within the carrier matrix has been achieved (polymer films or nanoparticles), which now opens the stage for appropriate targeting of the corresponding pro-drugs into live cells. First results on cytocidal and cytostatic properties of these compounds embedded in ethylcellulose nanoparticles are presented. Furthermore, an efficient low-cost method for the photochemical production of reactive endoperoxides based on high-power 660 nm LED excitation at room temperature and ambient conditions in ethanol solution is reported.  相似文献   

20.
Fluorescent indicators based on BODIPY   总被引:1,自引:0,他引:1  
This critical review covers the advances made using the 4-bora-3a,4a-diaza-s-indacene (BODIPY) scaffold as a fluorophore in the design, synthesis and application of fluorescent indicators for pH, metal ions, anions, biomolecules, reactive oxygen species, reactive nitrogen species, redox potential, chemical reactions and various physical phenomena. The sections of the review describing the criteria for rational design of fluorescent indicators and the mathematical expressions for analyzing spectrophotometric and fluorometric titrations are applicable to all fluorescent probes (206 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号