首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
一种无卤阻燃ABS体系的阻燃性能研究   总被引:3,自引:0,他引:3  
ABS是本世纪40年代发展起来的通用型热塑性材料[1],它有良好的力学性能,耐化学腐蚀、易加工等优点[2-6].  相似文献   

2.
In this work, based on castor oil (CO), flame retardant polyurethane sealants (FRPUS) with ammonium polyphosphate (APP) and aluminum hypophosphite (AHP) were prepared. The synergistic flame retardant effects between APP and AHP on flame retardancy, thermal stability, and flame retardant mechanisms of FRPUS were investigated. It was found that when the mass ratio of APP and AHP was 5:1, the limiting oxygen index (LOI) value of FRPUS increased to 35.1%, In addition, at this ratio, the parameters from cone calorimeter testing (CCT) were reduced; these parameters include peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR) and total smoke production (TSP). The thermal decomposition behavior of the FRPUS was investigated by thermogravimetric analysis (TGA). The results showed that AHP improved the thermal stability of the PUS/APP system and increased char residue at high temperatures. Moreover, the residual carbon was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM), gas phase pyrolysis products were investigated by thermogravimetric analysis/infrared spectrometry (TG-IR) and thermogravimetric analysis/mass spectrometry (TG-MS). It was observed that the flame retardant mechanisms of the APP/AHP system was the combination of gas and condensed phase flame retardant mechanisms.  相似文献   

3.
Journal of Thermal Analysis and Calorimetry - Natural cellulose paper is flame retarded using ammonium polyphosphate/montmorillonite (APP/MMT) nanocompound through coating method. Their...  相似文献   

4.
The synergistic effect of four different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), boron silicon containing preceramic oligomer (BSi) and lanthanum borate (LaB), were studied to improve the flame retardancy of a polypropylene (PP) intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated by limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis (TGA) and cone calorimeter tests. The addition of 20 wt% intumescent flame retardant (IFR) improves the flame retardancy by increasing the char formation. According to LOI and UL-94 test, boron compounds show their highest synergistic effect at 1 wt% loading. BPO4 containing composite shows the highest LOI (30), lowest maximum heat release rate (HRR) and lowest total heat release rate (THR) value. Although the char yield increases as the amount of boron compounds increases, the flame retarding effect decreases. Cone calorimeter and TGA data indicate that the boron compounds are likely to show their synergistic effect by reinforcing the integrity of char which improves its barrier effect rather than increasing the char yield.  相似文献   

5.
Nie  Shi-bin  Fang  Cheng-ye  Xu  Yu-xuan  Dong  Xiang  Yang  Ji-nian  Kong  Fan-bei  Han  Chao 《Journal of Thermal Analysis and Calorimetry》2022,147(22):12547-12559
Journal of Thermal Analysis and Calorimetry - Melamine–formaldehyde resin-coated bamboo fiber (MFBF) and ammonium polyphosphate (MFAPP) were prepared, and then flame-retardant polypropylene...  相似文献   

6.
Novel polyurethane zinc borate composites were prepared with the main aim to increase the flame retardancy of the polyurethane. It was discovered that the zinc borate had very significant effects on the oxidative stability of the neat polymer which was first observed by oxygen induction time tests and supported with actual weathering chamber tests. The oxidative stability of zinc borate-filled polyurethane was compared with the polyurethane stabilized with a commercial light stabilizer, Tinuvin B75 from Ciba SC. The performance of zinc borate-filled polyurethane was much better, as shown by oxygen induction time and weathering chamber tests. Additionally the flame retardancy was measured and significant flame retardancy was achieved. Mechanical tests, thermogravimetric analysis and scanning electron microscope studies were performed to characterize the products.  相似文献   

7.
采用氯化磷酸单苯酯(MPCP)和新戊二醇(NPG)为原料,以4-二甲氨基吡啶(DMAP)为催化剂,以四氢呋喃为溶剂,合成了一种含有新戊二醇结构的环状磷酸酯无卤阻燃剂新戊二醇基苯基磷酸酯(NGPP),并研究了其对环氧树脂阻燃性能的影响.反应收率可达81.2%.产物的结构经核磁、红外和质谱进行了表征.热分析表明,NGPP的起始热分解温度和最大热分解温度分别为189.0℃和259.4℃.NGPP在不饱和聚酯树脂中表现出较好的阻燃性能,且在添加适量三聚氰胺后阻燃性能进一步提高.  相似文献   

8.
A simple flame treatment method was explored to construct micro/nanostructures on a surface and then fabricate a biomimetic superhydrophobic surface at a relatively low cost. SiO2‐containing polydimethylsiloxane (PDMS) was used as a substrate. The PDMS replicas with various micropatterned surfaces were fabricated using grass leaf, sand paper, and PET sheet with parallel groove geometry as templates via PDMS replica molding. The PDMS replica surfaces with micron structures and the surface of a flat PDMS sheet as a control sample were further treated by flame. The fabricated surfaces were characterized by scanning electron microscopy and water contact angle measurements. The effect of surface microstructures on the transparency of PDMS was also investigated. The studies indicate that the fine nanoscale structures can be produced on the surfaces of PDMS replicas and a flat PDMS sheet by a flame treatment method, and that the hierarchical surface roughness can be adjusted and controlled by varying the flame treatment time. The flame‐treated surfaces of PDMS replicas and a flat PDMS sheet possess superhydrophobicity and an ultra‐low sliding angle reaching a limiting value of 1°, and the anisotropic wettability of the PDMS replica surface with oriented microgroove structures can be greatly suppressed via flame treatment. The visible light transmittance of the flame‐treated flat PDMS surface decreases with prolonged flame treatment times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.

Unsaturated polyester resin (UPR) is a widely applied engineering material with drawbacks of high fire risks and brittleness. In this paper, low-cost diethylene glycol (DEG) was used as one of diols to react with saturated and unsaturated anhydrides for unsaturated polyester pre-polymers. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, gel permeation chromatograph were used for studying their structures and differential scanning calorimetry, thermogravimetric analysis (TG) for studying their thermal properties. Incorporated DEG comonomer improves limited oxygen index values of cross-linked UPR from 20 to 26% as the mole proportion of DEG increases from 0 to 50 mol% in diols. Combustion test indicates that the UPR sample with 70 mol% DEG in diols is self-extinguishing with none drop, referring to nonflammable burning grade. What is more, mechanical properties are also increased greatly by comparing with typical UPR base. Pyrolysis behaviors of UPR in nitrogen atmosphere suggest that the polyesters incorporated with DEG will produce more char and residues during the degradation process. By comparing the pyrolysis behaviors of UPR having DEG with those of UPR adding ammonium polyphosphate in TG curves, the flame-retarding mechanism of DEG incorporation is probably due to residual char forming in temperature range of 500–800 °C, which is close to the burning temperature. This study suggests that DEG element increases effectively and environmental friendly the fire safety of UPR materials.

  相似文献   

10.
Microencapsulated ammonium polyphosphate (MMT‐MF‐APP) with a montmorillonite‐melamine formaldehyde resin coating layer was successfully prepared by in situ polymerization. The product was characterized by Fourier‐transform infrared, X‐ray photoelectron spectroscopy, and scanning electron microscopy. Water absorption analysis showed that the microencapsulation of APP with the MMT‐MF resin leads to a decrease in the particle's water solubility. The microcapsules also exhibited better mechanical properties and higher flame retardancy in the ethylene–vinyl acetate copolymer with high vinyl acetate content (EVM) rubber compared with the common ammonium polyphosphate. Moreover, thermogravimetric analysis results showed that the EVM composites with MMT‐MF‐APP and dipentaerythritol (DPER) as flame retardants possess higher thermal stability than those with common APP and DPER as flame retardants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Ammonium polyphosphate (APP)/polypropylene (PP) composites were prepared by melt blending and extrusion in a twin-screw extruder. APP was first modified by a silane coupling agent KH-550 then added to polypropylene. The surface modification of APP by the coupling agent decreased its water solubility and its interface compatibility with the PP matrix. Limiting oxygen index (LOI) and thermogravimetric analysis (TGA) were used to characterize the flame retardant property and the thermal stability of the composites. The addition of APP improved the flame retardancy of PP remarkably. The crystal structures of APP/PP composites were characterized by X-ray diffraction (XRD). The results indicated that β-crystal phase PP may be formed. The structures and morphologies of APP, KH-550/APP and APP/PP composites were characterized by field-emission scanning electron microscope (FESEM). The mechanical property tests showed good mechanical properties of composite materials. Compared with unmodified one, the impact strength, tensile strength and elongation of modified APP/PP were all improved.  相似文献   

12.
13.
Due to being halogen‐free, non‐toxic, non‐erosive and environmentally friendly, melamine‐based flame retardants are attracting more and more attention. As a melamine‐based intumescent flame retardant, in this study the melamine salt of pentaerythritol phosphate (MPP) was prepared from melamine phosphate (MP) and pentaerythritol (PER). The reaction of MP with PER was then systematically investigated. The reaction product MPP was utilized to flame‐retard polypropylene (PP). FT‐IR, TGA and DSC were used to characterize MPP and also to investigate the reaction of MP and PER in depth. The experimental results show that MPP has good thermal stability and matched decomposition temperature with that of PP, making it suitable for flame retarding of PP. Also, MPP is melting‐blendable due to its softening during the heating process. The structure of MPP at a MP:PER molar ratio of 2.0 was confirmed as the same to that of the product synthesized from phosphorus oxychloride, pentaerythritol and melamine. The reaction of MP with PER was greatly influenced by the MP:PER proportion, reaction temperature and reaction time, rather than the physical state of PER, and the reaction mechanism of MP with PER was proposed. The prepared flame‐retarded polypropylene composite with 35 wt% intumescent flame‐retardant MPP has a flame retarding level of 3.2 mm UL 94 V‐0, tensile strength 27.0 MPa, Young's modulus 2442 MPa and Izod notched impact strength 3.8 kJ/m2. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

15.
The flame retardancy and thermal degradation properties of polypropylene (PP) containing intumescent flame retardant additives, i.e. melamine pyrophosphate (MPyP) and charring‐foaming agent (CFA) were characterized by limiting oxygen index (LOI), UL 94, cone calorimeter, microscale combustion calorimetry, and thermogravimetric analysis (TGA). It has been found that the PP material containing only MPyP does not show good flame retardancy even at 30% additive level. Compared with the PP/MPyP binary system, the LOI values of the PP/MPyP/CFA ternary materials at the same additive loading are all increased, and UL 94 rating is raised to V‐0 from no rating (PP/MPyP). The cone calorimeter results show that the heat release rate and mass loss rate of some ternary materials decrease in comparison with the binary material. The microscale combustion calorimetry results indicate that the sample containing 22.5 wt% MPyP and 7.5 wt% CFA has the lowest heat release rate among all samples. The TGA results show that the thermal stability of the materials increases with the addition of MPyP, while decreases with the addition of CFA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The flame retardation of polypropylene (PP) composites containing melamine phosphate (MP) and pentaerythritol phosphate (PEPA) was characterized by cone calorimeter. The formation mechanism of the char obtained from the combustion of the composites after cone calorimeter testing was studied by scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Raman diffusion. Results demonstrated that the PP composite containing MP and PEPA showed good flame retardancy. It had been found that the intumescent char could be principally divided into three parts, i.e. outer, middle and inner char layer, according to their different structures and components.  相似文献   

17.
二季戊四醇磷酸酯的合成、表征及阻燃性能测试   总被引:1,自引:1,他引:0  
以磷酸和季戊四醇为原料,采用直接酯化法合成阻燃剂二季戊四醇磷酸酯,对样品进行了表征,并对合成工艺及其在聚烯烃中的阻燃性能进行了研究.确定最佳合成条件:二甲苯为带水剂;反应温度180-200℃;反应时间6-7h.将此阻燃剂与聚磷酸铵按40/60(质量比)复配添加到聚烯烃中,样品比重30%时阻燃级别可达UL94V-0级.  相似文献   

18.
以磷酸、季戊四醇、三聚氰胺为原料,通过酸醇直接酯化和烘焙中和两步反应合成膨胀型阻燃剂二季戊四醇磷酸酯三聚氰胺盐,并对烘焙中和反应条件及其在聚乙烯中的阻燃性能进行了研究.确定最佳合成条件:n (二季戊四醇磷酸酯):n (三聚氰胺)=1:1;反应温度130-140℃;反应时间3-4h.将此阻燃剂添加到聚乙烯中,样品重量35...  相似文献   

19.
The flammability of polypropylene (PP) composites containing intumescent flame retardant additives, i.e. melamine phosphate (MP) and pentaerythritol (PER), dipentaerythritol (DPER) or tripentaerythritol (TPER) was characterized by limiting oxygen index (LOI), UL 94 and the cone calorimeter, and the thermal degradation of the composites was studied using thermogravimetric analysis (TG) and real time Fourier transform infrared (RTFTIR). It has been found that the PP composite containing only MP does not show good flame retardancy even at 40% additive level. Compared with the PP/MP binary composite, the LOI values of the PP/MP/PER (PP/MP/DPER or PP/MP/TPER) ternary composites at the same additive loading are all increased, and UL 94 ratings of most ternary composites studied are raised to V-0 from no rating (PP/MP). The cone calorimeter results show that the heat release rate and smoke emission of some ternary composites decrease in comparison with the binary composite. It is noted from the TG data that initial decomposition temperatures of ternary composites are lower than that of the binary composite. The RTFTIR study indicates that the PP/IFR composites have higher thermal oxidative stability than the pure PP.  相似文献   

20.
Abstract

A triazine-based macromolecular hybrid charring agent containing zinc borate (MCA-K-ZB) was synthesized and combined with ammonium polyphosphate (APP) to improve the flame retardancy of polypropylene (PP). The flame retardancy and thermal properties of PP composites were investigated using limited oxygen index, vertical burning test, and thermogravimetric analysis. The results showed APP/MCA-K-ZB can improve the flame retardancy of PP compared with APP/MCA-K/ZB. The morphology of the char residues was investigated by scanning electron microscopy (SEM). The SEM result shows that MCA-K-ZB can improve the compactness and continuity of char residue compared with MCA-K/ZB, therefore improving the flame retardancy of PP composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号