共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ran Li Jinyan Du Yanmei Zheng Yueqin Wen Xinxiang Zhang Wenbin Yang Ang Lue Lina Zhang 《Cellulose (London, England)》2017,24(3):1417-1426
Ultra-lightweight cellulose foams were prepared by regeneration of sodium dodecyl sulfate (SDS)/cellulose/NaOH/urea blend solution via mechanical agitation and then freeze-drying. The morphology and properties of the blend solutions and foams were investigated via optical microscope, rheometer, BET and SEM. As a result, it was found that the inclusion complex structure between cellulose macromolecules and the solvent molecules was not destroyed. Moreover, the bubbles were about 20–50 μm in the solutions and larger (>100 μm) in the foams. Not only the micropores (bubbles) but also the nanopores could be observed in the wet and dried foams. The cellulose foams possessed ultra-low density of about 30 mg/cm3 and high specific surface area. The result of X-ray diffraction and Fourier transform infrared spectroscopy indicated that the cellulose foams were transited from cellulose I to cellulose II after dissolution and gelation. Bubbles inside the wet foams weakened the mechanical properties, but inversely increased the mechanical properties in the dried foams. Typical “J”-shaped curves were observed during the mechanical test, which revealed good compressive strength of dried foams. In this work, cellulose foams with ultra-lightweight and good mechanical properties were obtained, which exhibited great potentials for further development and comprehensive utilization of cellulose. 相似文献
3.
Justin D. Glover Colbi E. McLaughlin Mary K. McFarland Jonathan T. Pham 《Journal of polymer science. Part A, Polymer chemistry》2020,58(2):343-351
Commercial silicone elastomers are commonly used in soft materials research due to their easily tunable mechanical properties. However, conventional polydimethylsiloxane (PDMS) elastomers with moduli below ∼100 kPa contain uncrosslinked free molecules, which play a significant role in their behavior. To utilize these materials, it is important to quantify what role these free molecules play in the mechanical response before and after their removal. We present a simple and inexpensive extraction method that enables the removal of free molecules from a lightly crosslinked sheet of Sylgard 184, a commercially available PDMS elastomer. The materials can contain a majority of free molecules yet maintain a thin and flat geometry without fractures after extraction. Subsequently, we compare the modulus, maximum stretchability, and hysteresis behavior with mixing ratios ranging from 60:1 to 30:1, before and after extraction. We show that the modulus, maximum stretchability, and dissipation increase upon extraction. Moreover, our approach offers a route to prepare crosslinked silicone elastomers with a modulus as low as ∼20 kPa without free molecules from a commercially available kit. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 343–351 相似文献
4.
David Arencón Maria Lluïsa Maspoch José Ignacio Velasco 《Macromolecular Symposia》2003,194(1):225-232
PP/PET blends (95/5) filled with 50% by weight of glass beads were prepared and studied at morphological and mechanical level, and compared with its analogous samples of glass bead-filled PP. The influence of a compatibilizing agent (maleic anhydride grafted polypropylene) and different silane coupling agents was analysed. It has been found that PET embeds glass bead surface independently on the silane coupling agent employed. Addition of MAPP in PP/PET blends leaded to tensile strength values similar to those of unfilled PP, but rupture takes place in a brittle manner. 相似文献
5.
The reinforcing effect of clay on the mechanical properties of nitric acid–treated fluorosilicone rubber filled PI composites 下载免费PDF全文
The mechanical behaviour of fluorosilicone rubber–filled PI composites with and without clay was investigated. The clay filled fluorosilicone rubber composite had the highest interlaminar shear strength value of all the combinations because its higher bond strength may have hindered a large fibre/matrix debonding. The maximum tensile strength was observed for 20 vol% fluorosilicone rubber/PI/5vol%clay composite. The interlaminar shear strength of clay filled fluorosilicone rubber/PI composite was greater than that of fluorosilicone rubber/PI composite, which shows that the adhesion factor of the combination of the PI and fluorosilicone rubber was greater. 相似文献
6.
This paper addresses the effects of operating variables on mechanical properties of polyurethane/clay nanocomposites including tensile strength, abrasion resistance, and hardness. The variables were prepolymer type, clay cation, clay content, and prepolymer–clay mixing time. The experiments were carried out based on the design of experiments using Taguchi methods. The nanocomposites were synthesized via in situ polymerization starting from two different types of prepolymers (polyether‐ and polyester‐types of polyol reacted with toluene diisocyanate), and methylene‐bis‐ortho‐chloroanilline (MOCA) as a chain extender/hardener. Montmorillonite with three types of cation (Na+, alkyl ammonium ion, and MOCA) were examined. Among the parameters studied, prepolymer type and clay cation have the most significant effects on mechanical properties. Polyester nanocomposites showed larger improvements in mechanical properties compared to polyether materials due to higher shear forces exerted by polymer matrix on clay aggregates during polymer–clay mixing. The original MMT with Na+ cation results in weak improvements in mechanical properties compared to organoclays. It is observed that the stress and elongation at break, and abrasion resistance of the nanocomposite samples can be optimized with 1.5% of clay loading. The morphology and chemical structure of the optimum sample were examined by X‐ray diffraction and FT‐IR spectroscopy, respectively. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
7.
Sayena Rezanejad 《European Polymer Journal》2007,43(7):2856-2865
Shape memory polymer (SMP) such as cross-linked low-density polyethylene (XLDPE), can return from its temporary shape to the original (permanent) shape upon heating. SMP in comparison with shape memory alloy (SMA) and shape memory ceramic (SMC) has lower stiffness, so generates lower recovery force when it is being used as an actuator. Also, when SMP is reinforced with traditional micro-fillers, it often loses its shape memory effect due to the high weight fraction of filler (20-30%). To overcome these disadvantages, nanoclays can be used. The smart resultant nanocomposite, even in small clay loading level (0-10 wt.%), shows higher modulus, strength, and the other physical properties such as higher recovery force, required to act as an actuator.In this work, the effect of modified montmorillonite on mechanical and shape memory properties as well as the force generation of a shape memory cross-linked low density polyethylene were investigated.The results show that the modulus of elasticity, the recovery temperature, the recovery force and force recovery rate increase with increasing organoclay in nanocomposites, but final recovery strain decreases slightly. 相似文献
8.
Study on microstructure and mechanical properties relationship of short fibers/rubber foam composites 总被引:1,自引:0,他引:1
Research on short fibers/rubber foam composites is rarely found in the literature. In this paper, microcellular rubber foams unfilled (MF), strengthened by pretreated short fibers (MFPS) and untreated short fibers (MFUS) are prepared, respectively. The microstructure and mechanical properties of the three composites have been studied via scanning electron microscope (SEM) and mechanical testing, respectively. The SEM results show that both pretreated and untreated short fibers disperse uniformly in the composites and in bidimensional orientation. Moreover, the pretreated short fibers have much better adhesion with the rubber matrix than untreated ones. The experimental results also indicate that the introduction of short fibers is mainly responsible for the great enhancement of most mechanical properties of the microcellular rubber foams, and the good interfacial adhesion of the short fibers with the matrix contributes to the more extensive improvement in the mechanical properties. It is also found that the reinforcement effect of short fibers to compressive modulus strongly depends on the density of microcellular rubber foams, the orientation of short fiber and the deformation ratio. The compressive modulus of microcellular rubber foams at the normalized density less than 0.70 and beyond 0.70 is predicted by the modified Simple Blending Model and the Halpin-Kerner Model, respectively. The theoretically predicted values are in good accordance with the experimental results. 相似文献
9.
Effect of clay modification on the structure and mechanical properties of polyamide-6 nanocomposites 总被引:1,自引:0,他引:1
Elodie Naveau Zita Dominkovics Christophe Detrembleur Christine Jérôme József Hári Károly Renner Michaël Alexandre Béla Pukánszky 《European Polymer Journal》2011,(1):5-15
Polyamide-6 nanocomposites were prepared from a new phosphonium organoclay obtained at pilot scale in supercritical carbon dioxide (scCO2) and a commercially available ammonium modified-silicate. The composites were homogenised by twin-screw extrusion, then specimens for testing were prepared by injection moulding. The clay content of the composites was varied from 0 to 7 vol.% in 7 steps. The clays were characterised in detail; they differed in their surface coverage and gallery structure, while their particle size was similar and their surface energy differed only slightly. X-ray diffraction, electronic microscopy and rheology were used for the characterisation of composite structure. Different gallery structure of the clays led to dissimilar extent of exfoliation. The phosphonium organoclay exfoliated better in PA than the silicate treated with the ammonium salt in spite of its smaller surface coverage. The nanocomposites showed the usual complex structure: besides individual platelets and intercalated stacks, large particles were also present and the development of a silicate network could be shown at large clay contents. Quantitative determination of the extent of reinforcement revealed two determining factors: contact surface and strength of interaction. The first increases with exfoliation, but the latter decreases as an effect of organophilisation. The extent of exfoliation was also estimated quantitatively, and the calculation confirmed the results of qualitative evaluation showing larger extent of exfoliation for the scCO2-prepared phosphonium clay. 相似文献
10.
M. -F. Pinhas J. M. V. Blanshard W. Derbyshire J. R. Mitchell 《Journal of Thermal Analysis and Calorimetry》1996,47(5):1499-1511
Strips of gelatin have been prepared by extrusion at different water contents varying from 20 to 50% H2O (dry weight basis, d.w.b.). The processes of subsequent hydration or dehydration of these strips were followed by dynamic mechanical thermal analysis (DMTA), wide-angle X-ray diffraction and NMR relaxation measurements. A comparison of the calculated dependence of theT g of gelatin (T g anhydrous, 200?C) on water content (using the Ten Brinke and Karasz equation) with experimental results derived from DMTA showed that freshly extruded material followed the theoretical plot below 25% H2O (d.w.b.), but at higher water contents, the7 g deviated positively, probably due in part to the effect of delayed re-equilibration of water content after thawing of separated ice crystals. The experimental results determined after storage for one week fell on a different line, with aT g of 145?C for anhydrous gelatin Possibly, theT g is elevated by crystallization — a view supported by the WAXS spectra. The NMR relaxation results also showed a profound mobilization of the gelatin protons at water contents greater than 25% d.w.b. 相似文献
11.
Breakfast wheat-flake materials of different composition have been reconstituted as barshaped test pieces to reduce geometry and structure effects and allow better comparison of the matrix mechanical properties. The ground flakes comprised a control formulation and others in which components had been subtracted or substituted. The aim was to compare the mechanical properties of pressed specimens of multiple-component systems with those published for simpler one- and two-component materials. Sucrose or fructose, present in the ratio sugarwheat 15.9–6.1, lowered the modulus of wheat-flake material, but by progressively lesser extent with decreasing water content below 22% (wet-weight basis, w.w.b), the difference becoming negligible at water contents of 7 to 10% (w.w.b). However, the energy to break wheat-flake samples and their fracture toughness were reduced more by fructose than sucrose addition to a control formulation sample at these water contents. The energy to break and fracture toughness increased markedly with increasing water content for all formulations.This work was supported by a MAFF-DTI LINK grant under the Food Processing Sciences Programme involving Weetabix Ltd, APV Baker, Campden Food and Drink Research Association, University of Nottingham and Novo Nordisk (UK) Ltd. The authors acknowledge the scientific and financial support of the MAFF and LINK participants. They would also like to thank Dr. Simon Livings (University of Cambridge, Cavendish Laboratory) for his advice on preparation of hot pressed-samples and Mr. David Steer for the design of the hot press. 相似文献
12.
Currently Polyethylene terephthalate (PET) foam is the most promising structural core materials, and the tensile mechanical properties are one of its important application indicators. Herein, environmental-friendly supercritical CO2 (ScCO2) extrusion foaming was adopted to prepare PET foam. Aiming at investigating the influence of crystals on the mechanical properties, isothermal treatment in the post-process was used to improve the crystallization process of PET foams. Due to the crystal perfection proceeds via migration and rejection of the structural defects at the crystallites induced by slow crystallization, the crystallinity increased rapidly with the rise of isothermal temperature, especially above the glass transition temperature (Tg). Qualitatively, it can be concluded that the crystalline phase contents have an intimate positive correlation with the tensile modulus, meanwhile, the shape ratio of the crystal have no significant effects on the tensile modulus. In addition, a coupling scheme of aggregate two-layered composite inclusion model and Simone-Gibson equation was first proposed to quantify the mathematical relationship between crystallization and tensile modulus of PET foam, which realized basic agreement. 相似文献
13.
Segmented polyurethanes are important polymers for a number of industrial and technological applications. The purpose of this work was to synthesize polybutadiene-based polyurethanes and subsequently graft carboxylate and sulfonate side chains via thiol-ene reaction. Spectroscopic investigations showed that grafting yielded good conversion for the vinyl unsaturation of the polybutadiene soft segment. DSC and tensile testing revealed that grafted polyurethanes had a better segmental compatibility and superior mechanical properties than the control polyurethane without grafting. The carboxylic side chains of the soft segment were responsible for the observed improved mechanical properties. Initial protein adsorption tests on these polymers were found to be higher than the control surface. The polyurethanes of the current study could be used for biomedical applications where protein attachment to the surface is needed for specific cell adhesion and tissue repair. 相似文献
14.
Equations for a foam height, multiplicity, and foam stability of shampoo were suggested. Model deriving was based on an assumption that foams was monodispersed systems consisting from cells of gas in the form of pentagonal dodecahedra with liquid films created by two adsorption monolayers of surfactant monomers. 相似文献
15.
H. W. Bree J. Heijboer L. C. E. Struik A. G. M. Tak 《Journal of Polymer Science.Polymer Physics》1974,12(9):1857-1864
Four polymers, viz. polystyrene, polycarbonate, poly(methyl methacrylate), and poly-(vinyl chloride), were cooled from the melt to room temperature under hydrostatic pressures of 30 and 1000 atm. Cooling under high pressure increased the density by 0.4–0.6%, and the effect of this has been examined for the torsional creep properties, the dynamic properties at 1 Hz, the Charpy impact strength, the thermal expansivity, and the torsional yield stress. It turned out that, in general, densification affects the thermomechanical properties only slightly. 相似文献
16.
V. V. Turov E. F. Voronin L. P. Morozova V. M. Gun’ko L. V. Nosach 《Russian Journal of Applied Chemistry》2011,84(8):1304-1313
The hydration of highly dispersed nanosize silica was studied by low-temperature 1H NMR spectroscopy before and after the mechanical activation in a ball mill. 相似文献
17.
Gas permeation and mechanical properties of polypropylene nanocomposites with thermally-stable imidazolium modified clay 总被引:1,自引:0,他引:1
V. Mittal 《European Polymer Journal》2007,43(9):3727-3736
Dialkyl imidazolium salt with better thermal stability than the commonly used dimethyldioctadecyl ammonium salt was synthesized and ion exchanged on the montmorillonite surface. Polypropylene nanocomposites with different volume fractions of the obtained organo-montmorillonite (OMMT) were prepared and the effect of the modified clay on the gas barrier and mechanical properties was studied. Wide angle X-ray diffraction (WAXRD) and transmission electron microscopy (TEM) were used to investigate the microstructure obtained. Thermal behavior of the composites analyzed by thermogravimetric analysis was observed to enhance significantly with the filler volume fraction. The gas permeation through the nanocomposite films markedly decreased with augmenting the filler volume fraction. The decrease in the gas permeation was even more significant than through the composites with ammonium treated montmorillonite. Better thermal behavior of the organic modification owing to the delayed onset of degradation hindered the interface degradation along with detrimental side reactions with polymer itself. Transmission electron microscopic studies indicated the presence of mixed morphology i.e., single layers and the tactoids of varying thicknesses in the composites. The crystallization behavior of polypropylene remained unaffected with OMMT addition. A linear increase in the tensile modulus was observed with filler volume fraction owing to partial exfoliation of the clay. 相似文献
18.
19.
Implications of interfacial characteristics of food foaming agents in foam formulations 总被引:2,自引:0,他引:2
Rodríguez Patino JM Carrera Sánchez C Rodríguez Niño MR 《Advances in colloid and interface science》2008,140(2):95-113
The manufacture of food dispersions (emulsions and foams) with specific quality attributes depends on the selection of the most appropriate raw materials and processing conditions. These dispersions being thermodynamically unstable require the use of emulsifiers (proteins, lipids, phospholipids, surfactants etc.). Emulsifiers typically coexist in the interfacial layer with specific functions in the processing and properties of the final product. The optimum use of emulsifiers depends on our knowledge of their interfacial physico-chemical characteristics - such as surface activity, amount adsorbed, structure, thickness, topography, ability to desorb (stability), lateral mobility, interactions between adsorbed molecules, ability to change conformation, interfacial rheological properties, etc. -, the kinetics of film formation and other associated physico-chemical properties at fluid interfaces. These monolayers constitute well defined systems for the analysis of food colloids at the micro- and nano-scale level, with several advantages for fundamental studies. In the present review we are concerned with the analysis of physico-chemical properties of emulsifier films at fluid interfaces in relation to foaming. Information about the above properties would be very helpful in the prediction of optimised formulations for food foams. We concluded that at surface pressures lower than that of monolayer saturation the foaming capacity is low, or even zero. A close relationship was observed between foaming capacity and the rate of diffusion of the foaming agent to the air-water interface. However, the foam stability correlates with the properties of the film at long-term adsorption. 相似文献
20.
Polymer ferroelectret based on polypropylene foam: piezoelectric properties prediction using dynamic mechanical analysis 下载免费PDF全文
Thin polypropylene (PP) foam films were produced by continuous extrusion using supercritical nitrogen (N2) and then charged via corona discharge. The samples were characterized by dynamic mechanical analysis as a simple method to predict the piezoelectric properties of the cellular PP obtained. The results were then related to morphological analysis based on scanning electron microscopy and mechanical properties in tension. The results showed that the presence of a nucleating agent (CaCO3) substantially improved the morphology (in terms of cell size and cell density) of the produced foam. Also, an optimization of the extrusion (screw design, temperature profile, blowing agent, and nucleating agent content) and post‐extrusion (calendering temperature and speed) conditions led to the development of a stretched eye‐like cellular structure with uniform cell size distribution. This morphology produced higher storage and loss moduli in the machine (longitudinal) direction than for the transverse direction, as well as higher piezoelectric properties. The morphological and mechanical results showed that higher cell aspect ratio led to lower Young's modulus, which is suitable to achieve higher piezoelectric properties. Finally, the best quasi‐static piezoelectric d33 coefficient was 550 pC/N for a cellular PP ferroelectret having a uniform eye‐like cellular structure using N2 as the ionizing gas inside the cells, while the highest value was only 250 pC/N when air was used. Hence, the value of d33 can be improved by more than 100% just by replacing air with N2 as the ionizing gas. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献