首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The performance of a prototype porous tip sprayer for sheathless capillary electrophoresis-mass spectrometry (CE-MS) of intact proteins was studied. Capillaries with a porous tip were inserted in a stainless steel needle filled with static conductive liquid and installed in a conventional electrospray ionization (ESI) source. Using a BGE of 100 mM acetic acid (pH 3.1) and a positively charged capillary coating, a highly reproducible and efficient separation of four model proteins (insulin, carbonic anhydrase II, ribonuclease A and lysozyme) was obtained. The protein mass spectra were of good quality allowing reliable mass determination of the proteins and some of their impurities. Sheath-liquid CE-MS using the same porous tip capillary and an isopropanol-water-acetic acid sheath liquid showed slightly lower to similar analyte responses. However, as noise levels increased with sheath-liquid CE-MS, detection limits were improved by a factor 6.5-20 with sheathless CE-MS. The analyte response in sheathless CE-MS could be enhanced using a nanoESI source and adding 5% isopropanol to the BGE, leading to improved detection limits by 50-fold to 140-fold as compared to sheath liquid interfacing using the same capillary - equivalent to sub-nM detection limits for three out of four proteins. Clearly, the sheathless porous tip sprayer provides high sensitivity CE-MS of intact proteins.  相似文献   

2.
Antithrombin (AT) is a plasma glycoprotein which possesses anticoagulant and anti-inflammatory properties. AT exhibits various forms, among which are native, latent and heterodimeric ones. We studied the potential of capillary electrophoresis-mass spectrometry (CE-MS) using a sheath liquid interface, electrospray ionization (ESI), and a quadrupole-time-of-flight (Q-TOF) mass spectrometer to separate and quantify the different AT forms. For CE separation, a neutral polyvinyl alcohol (PVA) coated capillary was employed. The protein conformation was preserved by using a background electrolyte (BGE) at physiological pH. A sheath liquid of isopropanol-water 50:50 (v/v) with 14 mM ammonium acetate delivered at a flow rate of 120 μL h−1 resulted in optimal signal intensities. Each AT form exhibited a specific mass spectrum, allowing unambiguous distinction. Several co-injection experiments proved that latent AT had a higher electrophoretic mobility (μep) than native AT, and that these conformers could associate to form a heterodimer during the CE analysis. The developed CE-MS method enabled the detection and quantitation of latent and heterodimeric forms in a commercial AT preparation stored at room temperature for three weeks.  相似文献   

3.
Lysozyme and cytochrome c were imprinted in aqueous media, both as individual proteins and in combination, together with the functional monomer 3-aminophenylboronic acid (APBA) using ammonium persulphate as the initiator. The polymers were formed as films on the gold surfaces of quartz crystal microbalance (QCM) electrodes. It was shown that the lysozyme imprinted polymer was capable of selective template recognition. Micro-calorimetry measurements were used to determine the ratio of lysozyme and cytochrome c giving rise to the maximum enthalpy change when combined in the presence of the functional monomer. Using this procedure a maximum enthalpic change was found when the two proteins were present in an equimolar ratio. A polymer, formed by jointly imprinting the proteins in this ratio, exhibited minimal recognition for the individual template proteins, but was however able to recognise them in combination, suggesting that the proteins when imprinted together interact to form a ‘new’ imprintable motif.The introduction of a series of protein solutions, comprising the imprint proteins in various ratios, to the lysozyme/cytochrome c imprinted films, showed that the films exhibit maximum affinity towards the proteins when they are presented in approximately the same mole ratio (57% cytochrome c and 43% lysozyme) as was used to form the original imprint (equimolar ratio).Frequency response profiles of the QCM electrodes carrying the films, as a function of time, showed the establishment of a new stable baseline (−4.3 Hz) after the electrode was challenged with template protein (1.39 × 10−9 mol) in less than 3 min.  相似文献   

4.
Kok MG  de Jong GJ  Somsen GW 《Electrophoresis》2011,32(21):3016-3024
Analyte responses in CE‐ESI‐MS using negative ionization are frequently relatively low, thereby limiting sensitivity in metabolomics applications. In order to enhance the ionization efficiency of anionic metabolites, BGEs and sheath liquids (SLs) of various compositions were evaluated. Pressure‐induced infusion and CE‐MS experiments showed that addition of triethylamine (TEA) to the BGE and SL enhanced analyte intensities. A BGE consisting of 25 mM TEA (pH 11.7) and an SL of water–methanol (1:1, v/v) containing 5 mM TEA was selected, providing separation and detection of ten representative test metabolites with good reproducibility (migration time RSDs<1%) and linearity (R2>0.99). This BGE yielded lower limits of detection (0.7–9.1 μM) for most test compounds when compared with common CE‐MS methods using a BGE and SL containing ammonium acetate (NH4Ac) (25 and 5 mM, respectively). CE‐MS of human urine revealed an average amount of 231 molecular features in negative ionization mode when TEA was used in the BGE and SL, whereas 115 and 102 molecular features were found with an NH4Ac‐containing BGE and SL, employing a bare fused‐silica (BFS) and Polybrene‐dextran sulfate‐Polybrene (PB‐DS‐PB)‐coated capillary, respectively. With the CE‐MS method using TEA, about 170 molecular features were observed that were not detected with the NH4Ac‐based CE‐MS methods. For more than 82% of the molecular features that were detected with the TEA as well as the NH4Ac‐containg BGEs (i.e. common features), the peak intensities were higher using TEA with gain factors up to 7. Overall, the results demonstrate that BGEs and SLs containing TEA are quite favorable for the analysis of anionic metabolites in CE‐MS.  相似文献   

5.
Ping Tong  Lan Zhang  Yu He  Jintian Cheng 《Talanta》2010,82(4):1101-1106
In this paper, a rapid and effective method based on capillary zone electrophoresis (CZE) coupled with electrospray ionization mass spectrometry (ESI-MS) was established for the trace analysis of microcystin (MC) isomers in crude algae sample. The experimental conditions including the composition, acidity and concentration of buffer, separation voltage, injection time, and MS detection parameters were investigated in detail. A capillary separation system was as follows: a uncoated fused-silica capillary tube (50 μm i.d. × 90 cm), 40 mmol L−1 ammonium acetate solution (pH 9.86) as running buffer, 25 kV as separation voltage, 20 kV × 3 s water first and 20 kV × 20 s for sample injection. Mass analysis was performed in ESI source, with sheath gas temperature 150 °C, sheath gas pressure 10 psi, and sheath gas flow 6 L min−1. And sheath liquid was 7.5 mmol L−1 acetic acid in 50% isopropanol-water (3 μL min−1). Protonation and ammonium adduct molecular ions m/z 506.9 (MC-LR) and 532.0 (MC-YR) were used for the quantification of MCs. Under these conditions, two MCs were baseline separated within 9 min, the calibration curves were obtained in the range of 0.11-10.0 μg mL−1 and 0.16-10.5 μg mL−1 for MC-LR and MC-YR, respectively. Meanwhile, limits of detection were 0.05 and 0.08 μg mL−1 for MC-LR and MC-YR, respectively. The recoveries for the two MCs were in the range of 95.8-108%. The developed approach had been successfully applied to the analysis of MCs in crude algae samples.  相似文献   

6.
Spermine-graft-dextran (Spe-g-Dex) copolymer was synthesized and used as a non-covalent coating for the separation of proteins and neurotransmitters by capillary electrophoresis. The coating was obtained via flushing the capillary with 1.0% Spe-g-Dex copolymer solution for 2 min. Electroosmotic flow (EOF) was strongly suppressed, ranging from −1.60 × 10−9 to 3.65 × 10−9 m2 V−1 s−1. Effect of experimental conditions, such as the copolymer concentration, the concentration and pH of the background electrolyte (BGE), on the Spe-g-Dex coating was investigated. Separation of lysozyme, cytochrome c, ribonuclease A and α-chymotrypsinogen yielded high separation efficiencies ranging from 141 000 to 303 000 plates/m and recoveries from 85.4% to 98.3% at pH 4.0 (284.0 mM sodium acetate–acetic acid buffer, I = 50 mM). Run-to-run repeatabilities and day-to-day, and capillary-to-capillary reproducibilities were all below 1.7%. In addition, Spe-g-Dex coating allowed the successful separation of five neurotransmitters, 5-hydroxytryptamine, dopamine, epinephrine, isoprenaline, dobuamine at pH 4.0 with high separation efficiencies of 290 000–449 000 plates/m.  相似文献   

7.
Trehalose-6-phosphate (T6P) is an intermediate in the plant metabolic pathway that results in trehalose production. T6P has been shown to inhibit the sucrose nonfermenting-1-related protein kinase 1, which is a major regulator of metabolism. The quantitation of T6P has proven difficult due to the complexity of the plant matrix and the low abundance of T6P in plant tissues. The aim of this work was to develop a quantitation method for T6P present in Arabidopsis tissues, with capillary electrophoresis (CE) coupled to electrospray ionization-mass spectrometry (MS) with a sheath liquid (SL) interface. The CE-MS method was first optimized with respect to T6P signal intensity and separation of isomers by studying the composition of the background electrolyte (BGE) and SL. The use of triethylamine (TEA) in the BGE was favorable, providing separation of T6P from sucrose-6-phosphate and minimizing ionization suppression. Replacing ammonium acetate with TEA enhanced T6P signal intensities more than four times. The optimized method allowed quantification of T6P in plant extracts with good linearity (r 2 > 0.99) within a biologically relevant concentration range. The limit of quantification was 80 nM in Arabidopsis extracts, corresponding to 33 pmol/g plant fresh weight. The CE-MS method was applied to the determination of T6P in seedlings from wild type (WT) Arabidopsis and mutants lacking the trehalase AtTRE1, tre1-1, challenged with trehalose or sorbitol. T6P accumulation in tre1-1 plants grown on sorbitol was about twice the level of T6P found in WT. CE-MS is shown to be a fast and reliable technique to analyze phosphodisaccharides for seedling extracts. The low sample volume requirement of CE and its direct MS coupling makes it an attractive alternative for anion-exchange liquid chromatography–MS.  相似文献   

8.
The feasibility of atmospheric pressure chemical ionization (APCI) as an alternative ionization technique for capillary electrophoresis-mass spectrometry (CE-MS) was investigated using a grounded sheath-flow CE-MS sprayer and an orthogonal APCI source. Infusion experiments indicated that highest analyte signals were achieved when the sprayer tip was in close vicinity of the vaporizer entrance. The APCI-MS set-up enabled detection of basic, neutral, and acidic compounds, whereas apolar and ionic compounds could not be detected. In the positive ion mode, analytes could be detected in the entire transfer voltage range (0–5 kV), whereas highest signal intensities were observed when the corona discharge current was between 1000 and 2000 nA. In the negative ion mode, the transfer voltage typically was 500 V and the optimum corona discharge current was 6000 nA. Analyte signals were raised with increasing nebulizing gas pressure, but the pressure was limited to 25 psi to avoid siphoning and current drops. Signal intensities appeared to be optimal and constant over a wide range of sheath liquid flow rate (5–25 μL/min) and vaporizer temperature (200–350 °C). APCI-MS signals were unaffected by the composition of the background electrolyte (BGE), even when it contained sodium phosphate and sodium dodecyl sulfate (SDS). Consequently, BGE composition, sheath-liquid flow rate, and vaporizer temperature can be optimized with respect to the CE separation without affecting the APCI-MS response. The analysis of a mixture of basic compounds and a steroid using volatile and nonvolatile BGEs further demonstrates the feasibility of CE-APCI-MS. Detection limits (S/N = 3) were 1. 6–10 μM injected concentrations.  相似文献   

9.
In this work we analyzed the specificity of the amide VI band for different types of secondary structure elements in protein structures. This band involves the bending motion of the CO group of the peptide chain that is typically observed in the spectral region from 590 to 490 cm−1. The infrared absorbance spectra of a set of polypeptide model compounds of well known secondary structure was obtained at defined pH, including poly (l-lysine), poly (l-tyrosine), poly (l-alanine) and poly (l-histidine). In addition spectra of membrane proteins from the respiratory chain, namely the NADH:ubiquinone oxidoreductase, the cytochrome c oxidase and its CuA fragment, the cytochrome bc1 complex, a Rieske-type protein and in addition myoglobin, have been comparatively investigated. The systematic analysis of the amide VI band of the polypeptides and the proteins allowed correlating the signal appearing at ∼525 cm−1 to α-helical structures and signals at ∼545 cm−1 to β-sheet contributions. Random coils have been found to contribute at ∼535 cm−1 while the β-turns were observed at ∼560 cm−1.  相似文献   

10.
Molybdate was examined as a complex-forming additive to the CE background electrolytes (BGE) to affect the selectivity of separation of polyhydric phenols such as flavonoids (apigenin, hyperoside, luteolin, quercetin and rutin) and hydroxyphenylcarboxylic acids (ferulic, caffeic, p-coumaric and chlorogenic acid). Effects of the buffer concentrations and pH and the influence of molybdate concentration on the migration times of the analytes were investigated. In contrast to borate (which is a buffering and complex-forming agent generally used in CE at pH ≥9) molybdate forms more stable complexes with aromatic o-dihydroxy compounds and hence the complex-formation effect is observed at considerably lower pH. Model mixtures of cinnamic acid, ferulic acid, caffeic acid and 3-hydroxycinnamic acid were separated with 25 mM morpholinoethanesulfonic acid of pH 5.4 (adjusted with Tris) containing 0.15 mM sodium molybdate as the BGE (25 kV, silica capillary effective length 45 cm × 0.1 mm I.D., UV-vis detection at 280 nm). With 25 mM 2-hydroxy-3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulphonic acid/Tris of pH* 7.4 containing 2 mM sodium molybdate in aqueous 25% (v/v) methanol as the BGE mixtures of all the above mentioned flavonoids, p-coumaric acid and chlorogenic acid could be separated (the same capillary as above, UV-vis detection at 263 nm). The calibration curves (analyte peak area versus concentration) were rectilinear (r > 0.998) for ≈8-35 μg/ml of an analyte (with 1-nitroso-2-naphthol as internal standard). The limit of quantification values ranged between 1.1 mg l−1 for p-coumaric acid and 2.8 mg l−1 for quercetin. The CE method was employed for the assay of flavonoids in medicinal plant extracts. The R.S.D. values ranged between 0.9 and 4.7% (n = 3) when determining luteolin (0.08%) and apigenin (0.92%) in dry Matricaria recutita flowers and rutin (1.03%) and hyperoside (0.82%) in dry Hypericum perforatum haulm. The recoveries were >96%.  相似文献   

11.
The combination of capillary electrophoresis (CE) and mass spectrometry (MS) is particularly well adapted to bioanalysis due to its high separation efficiency, selectivity, and sensitivity; its short analytical time; and its low solvent and sample consumption. For clinical and forensic toxicology, a two-step analysis is usually performed: first, a screening step for compound identification, and second, confirmation and/or accurate quantitation in cases of presumed positive results. In this study, a fast and sensitive CE-MS workflow was developed for the screening and quantitation of drugs of abuse in urine samples. A CE with a time-of-flight MS (CE-TOF/MS) screening method was developed using a simple urine dilution and on-line sample preconcentration with pH-mediated stacking. The sample stacking allowed for a high loading capacity (20.5% of the capillary length), leading to limits of detection as low as 2 ng mL−1 for drugs of abuse. Compound quantitation of positive samples was performed by CE-MS/MS with a triple quadrupole MS equipped with an adapted triple-tube sprayer and an electrospray ionization (ESI) source. The CE-ESI-MS/MS method was validated for two model compounds, cocaine (COC) and methadone (MTD), according to the Guidance of the Food and Drug Administration. The quantitative performance was evaluated for selectivity, response function, the lower limit of quantitation, trueness, precision, and accuracy. COC and MTD detection in urine samples was determined to be accurate over the range of 10–1000 ng mL−1 and 21–1000 ng mL−1, respectively.  相似文献   

12.
A novel efficient proteolysis approach was developed based on trypsin-immobilized miniature incandescent bulbs and infrared (IR) radiation. Trypsin was covalently immobilized in the chitosan coating on the outer surface of miniature incandescent bulbs with the aid of glutaraldehyde. When an illuminated enzyme-immobilized bulb was immersed in protein solution, the emitted IR radiation could trigger and accelerate heterogeneous protein digestion. The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of hemoglobin (HEM), cytochrome c (Cyt-c), lysozyme (LYS), and ovalbumin (OVA) and the digestion time was significantly reduced to 5 min. The obtained digests were identified by MALDI-TOF-MS with the sequence coverages of 91%, 77%, 80%, and 52% for HEM, Cyt-c, LYS, and OVA (200 ng μL−1 each), respectively. The suitability of the prepared bulb bioreactors to complex proteins was demonstrated by digesting human serum.  相似文献   

13.
In this study, an ultra-sensitive method for the quantification of lysozyme based on the Gd3+ diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid labeling and capillary electrophoresis–inductively coupled plasma mass spectrometry (CE–ICP–MS) was described. The Gd3+-tagged lysozyme was effectively separated by capillary electrophoresis (CE) and sensitively determined by inductively coupled plasma mass spectrometry (ICP–MS). Based on the gadolinium-tagging and CE–ICP–MS, the lysozyme was determined within 12 min with an extremely low detection limit of 3.89 attomole (3.89 × 10−11 mol L−1 for 100 nL of sample injection) and a RSD < 6% (n = 5). The proposed method has been successfully used to detect lysozyme in saliva samples with a recovery of 91–106%, suggesting that our method is sensitive and reliable. The success of the present method provides a new potential for the biological assays and sensitive detection of low-abundant proteins.  相似文献   

14.
A ThermoFinnigan sheath liquid flow capillary electrophoresis-mass spectrometry system designed for coupling via a co-axial interface was coupled through an adapted via an alternative, commercially available interface for orthogonal sampling. The affordable, reversible structural alterations made in the commercial LC-MS interface resulted in improved analytical performance.The results of a conventional capillary electrophoresis (CE) method using a commercial co-axial source to determine antioxidant phenolic acids present in virgin olive oil, were compared with those obtained by using a modified orthogonal sampling position. In both cases, separations were done using a 10 mM ammonium acetate/ammonium hydroxide buffer solution at pH 10.0 and a constant applied voltage of 25 kV. The operating variables for the mass spectrometry interface were re-optimized for the modified orthogonal orientation. This allowed the sheath liquid, sheath gas flow rates and capillary voltage to be lowered with respect to the co-axial coupling configuration. In addition, the orthogonal sampling position provided a higher selectivity by effect of ion sampling excluding larger droplets—with an increased momentum along the axis—which were drained through the sink at the bottom of the ion source. Also, the new configuration facilitated sample ionization, improved electrospray stability and led to stronger signals as a result.The new system was validated in terms of precision (repeatability), linearity, and limits of detection and quantification. A comparison of the validation data with the results previously obtained by using a commercial co-axial configuration revealed the adapted orthogonal sampling position to provide better repeatability in both migration times and relative peak areas (<1% and 7% respectively with n = 15 replicates), a good linear range (with levels in the microgram-per-litre region) and lower limits of detection—especially for the compounds detected with the lowest sensitivity when co-axial ESI was used, as HFA, GEN, FER and VAN finding LOD among 24-3.0 μg L−1 respectively.  相似文献   

15.
The potential of capillaries noncovalently coated with a bilayer of oppositely charged polymers for the analysis of peptides by CE-MS was investigated. Bilayer coatings were produced by subsequently rinsing fused-silica capillaries with a solution of Polybrene (PB) and poly(vinyl sulfonate) (PVS). The PB-PVS coating showed to be fully compatible with MS detection causing no ionization suppression or background signals. The bilayer coating provided a considerable EOF at low pH, thereby facilitating the fast separation of peptides using a BGE of formic acid (pH 2.5). Under optimized CE-MS conditions, for enkephalin peptides high separation efficiencies were obtained with plate numbers in the range of 300,000-500,000. It is demonstrated that both the cancellation of the hydrodynamic capillary flow induced by the nebulizer gas and a sufficiently high-data acquisition rate are crucial for achieving these efficiencies. The overall performance of the CE-MS system using PB-PVS-coated capillaries was evaluated by the analysis of a tryptic digest of cytochrome c. The system provided an efficient separation of the peptide mixture, which could be effectively monitored by MS/MS detection allowing identification of at least 13 peptides within a time interval of 1.5 min. In addition, the PB-PVS coating proved to be very consistent yielding stable CE-MS patterns with highly favorable migration time reproducibilities (RSDs < 1% over a 3-day period).  相似文献   

16.
A simple method using a one-step liquid-liquid extraction (LLE) with butyl acetate followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of itopride in human plasma, using sulpiride as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 359.5 > 166.1 for itopride and m/z 342.3 > 111.6 for IS, respectively. Analytes were chromatographed on an YMC C18 reverse-phase chromatographic column by isocratic elution with 1 mM ammonium acetate buffer-methanol (20: 80, v/v; pH 4.0 adjusted with acetic acid). Results were linear (r2 = 0.9999) over the studied range (0.5-1000 ng mL−1) with a total analysis time per run of 2 min for LC-MS/MS. The developed method was validated and successfully applied to bioequivalence studies of itopride hydrochloride in healthy male volunteers.  相似文献   

17.
Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced “nanobody” EGa1, the binding fragment of a heavy-chain-only antibody. EGa1 is an antagonist of the epidermal growth factor receptor (EGFR), which is overexpressed on the surface of tumor cells. Using a background electrolyte (BGE) of 50 mM sodium phosphate (pH 8.0) in combination with a polybrene-poly(vinylsulfonic acid) capillary coating, CE analysis of EGa1 showed the presence of at least three components. Affinity of the EGa1 components towards the extracellular domain of EGFR was assessed by adding different concentrations (0–12 nM) of the receptor to the BGE while measuring the effective electrophoretic mobility of the respective EGa1 components. Binding curves obtained by plotting electrophoretic mobility shifts as a function of receptor concentration, yielded dissociation constants (Kd) of 1.65, 1.67, and 1.75 nM for the three components, respectively; these values were comparable to the Kd of 2.1 nM obtained for the bulk EGa1 product using a cellular assay. CE with mass spectrometry (MS) detection using a BGE of 25 mM ammonium acetate (pH 8.0) revealed that the EGa1 sample comprised of significant amounts of deamidated, bisdeamidated and N-terminal pyroglutamic acid products. CE–MS using a BGE of 100 mM acetic acid (pH 2.8) in combination with a polybrene–dextran sulfate–polybrene capillary coating demonstrated the additional presence of minor products related to incomplete removal of the signal peptide from the produced nanobody. Combining the results obtained from affinity CE and CE–MS, it is concluded that the EGa1 nanobody product is heterogeneous, comprising highly-related proteins that exhibit very similar affinity towards EGFR.  相似文献   

18.
Yoon KH  Lee SY  Jang M  Ko SH  Kim W  Park JS  Park I  Kim HJ 《Talanta》2005,66(4):831-836
A simple, fast and sensitive high-performance liquid chromatography (HPLC)-electrospray ionization (ESI) tandem mass spectrometric method (LC-MS/MS) has been developed for determination of propiverine and propiverine N-oxide metabolite in human plasma using oxybutynin as internal standard. Instead of extracting propiverine from plasma using organic solvents, which should be separated from the aqueous phase and evaporated before injecting the sample into the chromatograph, plasma sample containing propiverine and N-oxide was directly injected after precipitating proteins with acetonitrile. Numerous compounds in the plasma did not interfere with the highly specific multiple reaction monitoring in tandem mass spectrometric detection following C8 reversed-phase chromatographic separation under conditions that eluted propiverine, N-oxide and oxybutynin within 2 min (0.1% formic acid in water/acetonitrile, 25:75, v/v). The LC-MS/MS method and an alternative LC-MS method, using methyl-t-butyl ether extraction and selected ion monitoring, were validated over 1-250 ng ml−1 of propiverine and 2 to 500 ng ml−1 of N-oxide, and successfully applied in a pharmacokinetic study. The lower limit of quantitation was 1 ng ml−1 for propiverine and 2 ng ml−1 for N-oxide in both methods.  相似文献   

19.
Complexation accompanied by denaturation of protein with synthetic carboxylic acid receptors was investigated, to evaluate the key factors for recognition of proteins. The synthetic receptors used were tetraphenylporphyrin (TPP) derivatives and receptors bearing multiple (2–8) carboxylic acid groups. The complexation behavior was quantified from the absorption in the far UV CD spectrum attributed to the secondary structure of the protein. TPP derivatives bearing multiple carboxylic acid groups in the side chains exhibited higher affinity than other receptors that were smaller and had fewer carboxylic acid groups. As the degree of complexation was influenced by the pH and ionic strength in aqueous solution, electrostatic interaction was one of the most important factors for the recognition of proteins. Complexation was also estimated by observation of fluorescence quenching of the TPP derivatives. The stoichiometry of the complexes between lysozyme and the porphyrins was investigated by quantitative analysis of the denaturation using CD spectra. From the results of Job plots and slope analysis for the amount of denatured protein, formation of 1:1 complexes was confirmed. The equilibrium association constants (Kass) for lysozyme and the TPP receptors ranged from 0.6 × 106 to 1.1 × 106 M−1. The lytic activity of lysozyme was partially lost in the presence of anionic TPP derivatives, due to complexation and denaturation.  相似文献   

20.
Concentration dependence of NaCl salting of lysozyme was investigated in the range of 0.5-9 mM lysozyme concentration in 0.1 M sodium acetate buffer, pH=4.25and the concentration of NaCl up to 0.1 M. Calorimetric experiments were performed with the use of a titration ITC Omega MicroCal calorimeter. It was found that the estimated number of bonding sites depended on the lysozyme concentration. For infinitely diluted lysozyme solution, the number of binding sites could be roughly estimated to ∼50. In the range of 2-9 mM protein concentration, the number of weakly binding (K=2.7±0.8 M−1) sites on the protein surface was estimated to 35±7. McMillan and Mayer’s approach reduced to the third order virial coefficients demonstrates that besides the dominating effect of the protein—salt interaction (a11) the coefficient describing the lysozyme aggregation upon salt addition (a12) is statistically significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号