首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid separation methods in combination with electrospray mass spectrometry as well as the recently introduced fragmentation method electron capture dissociation (ECD) have become powerful tools in proteomics research. This paper presents the results of the first successful attempts to combine liquid chromatography (LC) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with ECD in the analysis of a mixture of standard peptides and of a bovine serum albumin tryptic digest. A novel electron injection system provided conditions for ECD sufficient to yield extensive sequence information for the most abundant peptides in the mixtures on the time-scale of the chromatographic separation. The results suggest that LC/ECD-FTICRMS can be employed in the characterization of peptides in enzymatic digests of proteins or protein mixtures and identify and localize posttranslational modifications.  相似文献   

2.
Peptide sequencing by mass spectrometry is gaining increasing importance for peptide chemistry and proteomics. However, available tools for interpreting matrix-assisted laser desorption/ionization post-source decay (MALDI-PSD) mass spectra depend on databases, and identify peptides by matching experimental data with spectra calculated from database sequences. This severely obstructs the identification of proteins and peptides not listed in databases or of variations, e.g. mutated proteins. The development of a new computer program for database-independent peptide sequencing by MALDI-PSD mass spectrometry is reported here. This computer program was validated by the determination of the correct sequences for various peptides including sequences listed in the sequence databases, but also for peptides that deviate from database sequences or are completely artificial. This strategy should substantially facilitate the identification of novel or variant peptides and proteins, and increase the power of MALDI-PSD analyses in proteomics.  相似文献   

3.
MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for the detection and localization of drugs, proteins, and lipids on-tissue. Nevertheless, this approach can only perform identification of low mass molecules as lipids, pharmaceuticals, and peptides. In this article, a combination of approaches for the detection and imaging of proteins and their identification directly on-tissue is described after tryptic digestion. Enzymatic digestion protocols for different kinds of tissues—formalin fixed paraffin embedded (FFPE) and frozen tissues—are combined with MALDI-ion mobility mass spectrometry (IM-MS). This combination enables localization and identification of proteins via their related digested peptides. In a number of cases, ion mobility separates isobaric ions that cannot be identified by conventional MALDI time-of-flight (TOF) mass spectrometry. The amount of detected peaks per measurement increases (versus conventional MALDI-TOF), which enables mass and time selected ion images and the identification of separated ions. These experiments demonstrate the feasibility of direct proteins identification by ion-mobility-TOF IMS from tissue. The tissue digestion combined with MALDI-IM-TOF-IMS approach allows a proteomics “bottom-up” strategy with different kinds of tissue samples, especially FFPE tissues conserved for a long time in hospital sample banks. The combination of IM with IMS marks the development of IMS approaches as real proteomic tools, which brings new perspectives to biological studies.  相似文献   

4.
The greatest challenge for proteomics is the inherently complex nature of cellular proteomes as they are highly dynamic entities. High performance liquid chromatography is an indispensable tool in proteomics research, providing high-speed, high sensitivity separation and good resolution of proteins and peptides. Chromatographic sciences have played an animated, bustling and critical role in many fields, the next challenging analytical project for the chromatographic scientists is in the area of proteomics. Which type of analysis best determines the optimal separation technique for any proteomic study? The aim of this review is to outline the different chromatographic strategies that have been employed for analysis of complex mixtures of proteins/peptides, highlighting the role of liquid chromatography coupled to mass spectrometry.  相似文献   

5.
用标准蛋白质混合物建立了一种适用于低丰度混合蛋白质及其异构体分离与鉴定的蛋白质组学方法。通过IPG胶条等电聚焦分离蛋白质,染色后进行混合胶内酶切,采用纳升电喷雾毛细管液相色谱一串联质谱“散弹法(shot-gun)”分析酶切产物,并进行数据库检索鉴定蛋白质。运用该方法从K562细胞株样品中鉴定出14种具有重要功能的蛋白质,部分蛋白质同时在多个条带中出现,可能是异构体。肽段及其碎片离子的平均质量偏差小于0.05U,综合得分大都远远超过有效值。该方法灵敏、准确度高、分辨率高、省时、便于操椎存苍宗罾白甩异构体青而右优势.  相似文献   

6.
在蛋白质组学研究中,多肽混合物的有效分离对蛋白质鉴定和蛋白质之间相互作用的研究起着决定性的影响。基于此,用反相液相色谱研究了在两个不同长度的色谱柱上分离多肽混合物时色谱柱长度与峰容量的关系,同时考察了梯度洗脱时间对峰容量和峰宽的影响。实验结果表明,色谱柱长度对峰容量有显著的影响,而延长梯度洗脱时间不仅可以增加峰容量,而且可以增加峰宽。这说明用毛细管液相色谱 串联质谱联用方法对多肽混合物进行分离鉴定时,采用较长的色谱柱和较长的梯度洗脱时间有利于对更多的多肽进行分析鉴定。  相似文献   

7.
Remarkable advances in mass spectrometry sensitivity and resolution have been accomplished over the past two decades to enhance the depth and coverage of proteome analyses. As these technological developments expanded the detection capability of mass spectrometers, they also revealed an increasing complexity of low abundance peptides, solvent clusters and sample contaminants that can confound protein identification. Separation techniques that are complementary and can be used in combination with liquid chromatography are often sought to improve mass spectrometry sensitivity for proteomics applications. In this context, high‐field asymmetric waveform ion mobility spectrometry (FAIMS), a form of ion mobility that exploits ion separation at low and high electric fields, has shown significant advantages by focusing and separating multiply charged peptide ions from singly charged interferences. This paper examines the analytical benefits of FAIMS in proteomics to separate co‐eluting peptide isomers and to enhance peptide detection and quantitative measurements of protein digests via native peptides (label‐free) or isotopically labeled peptides from metabolic labeling or chemical tagging experiments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Liquid chromatography/mass spectrometry (LC/MS)-based proteomics has been used to identify soluble proteins in the bovine adrenal medulla. This gland is a major source of hormones, opioids, neurotransmitters, and several vital proteins. The adrenal medulla proteins were first purified using ammonium sulfate precipitation. The resulting proteins were then pre-fractionated with a C-4 high-performance liquid chromatography (HPLC) column. Each 2-min HPLC fraction was digested with trypsin, and separated further and analyzed using capillary liquid chromatography/tandem mass spectrometry (capLC/nanospray-MS/MS) to map the proteome of the adrenal medulla. The parent mass and sequence ion information thus obtained for tryptic peptides was used to search the NCBInr database using the SEQUEST search engine. A total of 195 proteins were identified, of which 71 had good scores (delta correlation value greater than 0.1, preliminary score above 200, and cross-correlation value above 2.5). The prominent proteins thus identified are secretogranin I precursor, chromogranin A, proenkephalin A precursor, myosin X, hemoglobin beta chain, hemoglobin alpha chain, heat shock protein 10 kDa, and replicase.  相似文献   

9.
多肽组学是近年来兴起的一门新型学科,质谱已成为多肽组学研究的强有力手段.然而,用于检测具有相同氨基酸组成但序列不同的多肽时,只能给出等同的分子离子峰,在多肽结构解析上受到一定限制.因此,发展色谱分离.质谱检测联用技术是分析具有相同氨基酸组成但序列不同的多肽的有效途径.本文建立了一种氨基酸组成相同序列不同的小分子多肽的反相液相色谱分离-电喷雾离子化质谱检测新方法.该方法采用高效液相色谱-质谱联用技术,以两种三肽Gly.Ser.Phe和Gly.Phe.Ser为模式样品对象,考察了小分子多肽在不同流动相组成、流动相添加剂及pH等条件下的液相色谱行为,并讨论其保留机理.研究结果表明,在最优化的实验条件下,该方法稳定性好,重现性高,为多肽组学研究中的多肽解析提供科学的分析方法.  相似文献   

10.
Mass spectrometry (MS)‐based quantitative proteomics has become a critical component of biological and clinical research for identification of biomarkers that can be used for early detection of diseases. In particular, MS‐based targeted quantitative proteomics has been recently developed for the detection and validation of biomarker candidates in complex biological samples. In such approaches, synthetic reference peptides that are the stable isotope labeled version of proteotypic peptides of proteins to be quantitated are used as internal standards enabling specific identification and absolute quantification of targeted peptides. The quantification of targeted peptides is achieved using the intensity ratio of a native peptide to the corresponding reference peptide whose spike‐in amount is known. However, a manual calculation of the ratios can be time‐consuming and labor‐intensive, especially when the number of peptides to be tested is large. To establish a liquid chromatography/matrix‐assisted laser desorption/ionization time‐of‐flight tandem mass spectrometry (LC/MALDI TOF/TOF)‐based targeted quantitative proteomics pipeline, we have developed a software named Mass Spectrometry based Quantification (MSQ). This software can be used to automate the quantification and identification of targeted peptides/proteins by the MALDI TOF/TOF platform. MSQ was applied to the detection of a selected group of targeted peptides in pooled human cerebrospinal spinal fluid (CSF) from patients with Alzheimer's disease (AD) in comparison with age‐matched control (OC). The results for the automated quantification and identification of targeted peptides/proteins in CSF were in good agreement with results calculated manually. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Weinberger SR  Viner RI  Ho P 《Electrophoresis》2002,23(18):3182-3192
A new global protein digestion and selective peptide extraction strategy for the purpose of monitoring differential protein expression, coined as tagless extraction-retentate chromatography, is introduced. Target protein populations are firstly digested under reduced and alkylated conditions, and resultant peptides selectively extracted via covalent attachment to methionine residues by bromoacetyl reactive groups tethered to the surface of glass beads packed in small reaction vessels. After conjugation, reactive beads are stringently washed to remove nonspecifically bound peptides and then later treated with beta-mercaptoethanol to release captured methionine peptides in their nascent state, without complicating affinity tags. Recovered methionine containing peptides are profiled using the surface-enhanced laser desorption/ionization (SELDI) retentate chromatography mass spectrometry (RCMS) method. Selected peptides are further studied employing ProteinChip tandem mass spectrometry (MS/MS) analysis to identify their parent proteins. This approach has been applied to an Escherichia coli lysate model system and has demonstrated facility in reducing global digest complexity, sensitivity to low protein expression levels, and significant quantitative capability. It is envisioned that tagless extraction-RCMS will evolve to be a valuable approach for both basic research and clinical proteomics endeavors.  相似文献   

12.
Recently various methods for the N-terminal sulfonation of peptides have been developed for the mass spectrometric analyses of proteomic samples to facilitate de novo sequencing of the peptides produced. This paper describes the isotope-coded N-terminal sulfonation (ICenS) of peptides; this procedure allows both de novo peptide sequencing and quantitative proteomics to be studied simultaneously. As N-terminal sulfonation reagents, 13C-labeled 4-sulfophenyl[13C6]isothiocyanate (13C-SPITC) and unlabeled 4-sulfophenyl isothiocyanate (12C-SPITC) were synthesized. The experimental and reference peptide mixtures were derivatized independently using 13C-SPITC and 12C-SPITC and then combined to generate an isotopically labeled peptide mixture in which each isotopic pair differs in mass by 6 Da. Capillary reverse-phase liquid chromatography/tandem mass spectrometry experiments on the resulting peptide mixtures revealed several immediate advantages of ICenS in addition to the de novo sequencing capability of N-terminal sulfonation, namely, differentiation between N-terminal sulfonated peptides and unmodified peptides in mass spectra, differentiation between N- and C-terminal fragments in tandem mass spectra of multiply protonated peptides by comparing fragmentations of the isotopic pairs, and relative peptide quantification between proteome samples. We demonstrate that the combination of N-terminal sulfonation and isotope coding in the mass spectrometric analysis of proteomic samples is a viable method that overcomes many problems associated with current N-terminal sulfonation methods.  相似文献   

13.
The development of mass spectrometric methodologies for the sequencing of peptides and proteins are recounted. Early strategies for the determination of very large proteins based on a combination of nucleotide sequencing and mass spectrometric amino acid sequencing are described and their historical significance to the new field of proteomics is outlined.  相似文献   

14.
Mass spectrometry used in combination with a wide variety of separation methods is the principal methodology for proteomics. In bottom-up approach, proteins are cleaved with a specific proteolytic enzyme, followed by peptide separation and MS identification. In top-down approach intact proteins are introduced into the mass spectrometer. The ions generated by electrospray ionization are then subjected to gas-phase separation, fragmentation, fragment separation, and automated interpretation of mass spectrometric and chromatographic data yielding both the molecular weight of the intact protein and the protein fragmentation pattern. This approach requires high accuracy mass measurement analysers capable of separating the multi-charged isotopic cluster of proteins, such as hybrid ion trap-Fourier transform instruments (LTQ-FTICR, LTQ-Orbitrap). Front-end separation technologies tailored for proteins are of primary importance to implement top-down proteomics. This review intends to provide the state of art of protein chromatographic and electrophoretic separation methods suitable for MS coupling, and to illustrate both monodimensional and multidimensional approaches used for LC-MS top-down proteomics. In addition, some recent progresses in protein chromatography that may provide an alternative to those currently employed are also discussed.  相似文献   

15.
The field of proteomics involves the combined application of advanced separation techniques, mass spectrometry, and bioinformatics tools to characterize proteins in complex biological mixtures. Here we report the identification of nine proteins from the human pituitary proteome, using the proteomics approach. The pituitary proteins were separated by two-dimensional electrophoresis, and were visualized by silver staining. The proteins of interest were subjected to in-gel digestion with trypsin, and the masses of the resulting peptides were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This tryptic mass map was used to identify the proteins through a search of a protein-sequence database. The identified proteins include important hormones, and enzymes with various catalytic activities. These proteins will be used to construct a two-dimensional reference database of the human pituitary. This database will be employed to study changes in the pituitary proteome that are associated with the formation of pituitary tumors.  相似文献   

16.
Over the past several years, a large effort has been focused on improvements of two-dimensional (2-D) gel electrophoresis-based proteomics technology, and on development of novel approaches for proteome analysis. Here, we describe the application of an alternative strategy for the analysis of complex proteomes. The strategy combines isoelectric focusing in immobilized pH gradient strips (in-gel IEF), mass spectrometry (MS), and bioinformatics. A protein mixture is separated by in-gel IEF, and the entire strip is cut into a set of gel sections. Proteins in each gel section are digested with trypsin, and the tryptic peptides are subjected to liquid chromatography-nanoelectrospray-quadrupole ion-trap tandem mass spectrometry (LC-ESI-MS/MS). The LC-ESI-MS/MS data are used to identify the proteins through searches of a protein sequence database. Using this in-gel IEF-LC-MS/MS strategy, we have identified 127 proteins from a human pituitary. This study demonstrates the potential of the in-gel IEF-LC-MS/MS approach for analyses of complex mammalian proteomes.  相似文献   

17.
In this work, we demonstrate the potential use of immobilized pH gradient isoelectric focusing as a first dimension in shotgun proteomics. The high resolving power and resulting reduction in matrix ionization effects due to analyzing peptides with almost the exact same physiochemical properties, represents a significant improvement in performance over traditional strong cation-exchange first-dimensional analysis associated with the shotgun proteomics approach. For example, using this technology, we were able to identify more than 6000 peptides and > 1200 proteins from the cytosolic fraction of Escherichia coli from approximately 10 microg of material analyzed in the second-dimensional liquid chromatography-tandem mass spectrometry experiment. Sample loads on the order of 1 mg can be resolved to 0.25 isoelectric point (pI) units, which make it possible to analyze organisms with significantly larger genomes/proteomes. Accurate pI prediction can then be employed using currently available algorithms to very effectively filter data for peptide/protein identification, and thus lowering the false-positive rate for cross-correlation-based peptide identification algorithms. By simplifying the protein mixture problem to tryptic peptides, the effect of specific amino acids on pI prediction can be evaluated as a function of their position in the peptide chain.  相似文献   

18.
Recently, multidimensional shotgun proteomics has proven to be an alternative technology able to identify hundreds of proteins from single samples. Two major limitations of the technology are the presence of high abundance proteins (e.g. RUBISCO in plant leaf tissue) and the enormous number of co-eluting peptides that overstrain the loading and resolving capacity of conventional particle-packed columns as well as the capacity of electrospray ionisation due to ion suppression. Here, the coupling of fast performance liquid chromatography (FPLC) pre-fractionation of an Arabidopsis leaf protein extract and subsequent two-dimensional liquid chromatography/mass spectrometry with improved resolution using a monolithic silica C18 capillary column allowed the identification of 1032 unique proteins in a single 4 mg total protein plant leaf tissue sample. The reassignment of peptide IDs to distinct FPLC protein fractions enhances the identification procedure, especially in the case of present protein isoforms. The proposed strategy is useful to detect proteins otherwise not seen in conventional multidimensional chromatography/mass spectrometry approaches.  相似文献   

19.
Proteomics represents a significant challenge to separation scientists because of the diversity and complexity of proteins and peptides present in biological systems. Mass spectrometry as the central enabling technology in proteomics allows detection and identification of thousands of proteins and peptides in a single experiment. Liquid chromatography is recognized as an indispensable tool in proteomics research since it provides high-speed, high-resolution and high-sensitivity separation of macromolecules. In addition, the unique features of chromatography enable the detection of low-abundance species such as post-translationally modified proteins. Components such as phosphorylated proteins are often present in complex mixtures at vanishingly small concentrations. New chromatographic methods are needed to solve these analytical challenges, which are clearly formidable, but not insurmountable. This review covers recent advances in liquid chromatography, as it has impacted the area of proteomics. The future prospects for emerging chromatographic technologies such as monolithic capillary columns, high temperature chromatography and capillary electrochromatography are discussed.  相似文献   

20.
Glycans are oligosaccharides associated with proteins, and are known to confer specific functions and conformations on glycoproteins. As protein tridimensional structures are related to function, the study of glycans and their impact on protein folding can provide important information to the field of proteomics. The subdiscipline of glycomics (or glycoproteomics) is rapidly growing in importance as glycans in proteins have shown to be involved in protein-protein or protein-(drug, virus, antibody) interactions. Glycomics studies most often aim at identifying glycosylation sites, and thus are performed on deglycosylated proteins resulting in loss of site-specific details concerning the glycosylation. In order to obtain such details by mass spectrometry (MS), either whole glycoproteins must be digested and analyzed as mixtures of peptides and glycopeptides, or glycans must be isolated from glycopeptide fractions and analyzed as pools. This article describes parallel experiments involving both approaches, designed to take advantage of the StrOligo algorithm functionalities with the aim of characterizing glycosylation microheterogeneity on a specific site. A hybrid quadrupole-quadrupole-time-of-flight (QqTOF) instrument equipped with a matrix-assisted laser desorption/ionization (MALDI) source was used. Glycosylation of alpha 5 beta 1 subunits of human integrin was studied to test the methodology. The sample was divided in two aliquots, and glycans from the first aliquot were released enzymatically, labelled with 2-aminobenzamide, and identified using tandem mass spectrometry (MS/MS) and the StrOligo program. The other aliquot was digested with trypsin and the resulting peptides separated by reversed-phase high-performance liquid chromatography (HPLC). A specific collected fraction was then analyzed by MS before and after glycan release. These spectra allowed, by comparison, detection of a glycopeptide (several glycoforms) and elucidation of peptide sequence. Compositions of glycans present were proposed, and identification of possible glycan structures was conducted using MS/MS and StrOligo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号