首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL−1 to 100 ng mL−1 with a detection limit of 3 pg mL−1 (S/N = 3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.  相似文献   

2.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   

3.
In this paper, a simple and sensitive amperometric immunosensor for simultaneous detection of four biomarkers by using distinguishable redox-probes as signal tags was proposed for the first time. In sandwich immunoassay format, four kinds of capture antibodies (C-Ab) were immobilized by gold nanoparticles (AuNPs) electro-deposited on the surface of glass carbon electrode (GCE); four kinds of detection antibodies (D-Ab) labeled with different redox probes (including anthraquinone 2-carboxylic acid (Aq), thionine (Thi), ferrocenecarboxylic acid (Fc) and tris(2,2’-bipyridine-4,4’-dicarboxylic acid) cobalt(III) (Co(bpy)33+)), were combined with 3,4,9,10-perylenetetracarboxylic acid (PTCA), poly(diallyldimethylammonium chloride) (PDDA) and AuNPs functionalized carbon nanotubes, and served as signal tracer. When four target antigens were present, differential pulse voltammetry (DPV) scan exhibited four well-resolved peaks, each peak indicated one antigen, and its intensity was quantitative correlational to the concentration of corresponding analyte. To verify the strategy, four biomarkers for diagnosis of colorectal carcinoma, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9 CA125, and CA242, were used as model analytes, the immunosensor exhibited high selectivity and sensitivity, and peak current displayed good linear relationship to logarithm concentration in the ranges from 0.016 to 15 ng mL−1 for CEA; 0.008 to 10 ng mL−1 for CA19-9; 0.012 to 12 ng mL−1 for CA125; 0.010 to 10 ng mL−1 for CA242, and low detection limits of 4.2, 2.8, 3.3 and 3.8 pg mL−1, respectively.  相似文献   

4.
Gao X  Zhang Y  Wu Q  Chen H  Chen Z  Lin X 《Talanta》2011,85(4):1980-1985
A simple and controllable one-step electrodeposition method for the preparation of a chitosan-carbon nanotubes-gold nanoparticles (CS-CNTs-GNPs) nanocomposite film was used to fabricate an immunosensor for detection of carcinoembryonic antigen (CEA). The porous three-dimensional CS-CNTs-GNPs nanocomposite film, which offered a large specific surface area for immobilization of antibodies, exhibited improved conductivity, high stability and good biocompatibility. The morphology of the formed nanocomposite film was investigated by scanning electron microscopy (SEM), and the electrochemical behaviors of the immunosensor were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Under the optimal conditions, the proposed immunosensor could detect CEA in two linear ranges from 0.1 to 2.0 ng mL−1 and from 2.0 to 200.0 ng mL−1, with a detection limit of 0.04 ng mL−1. The immunosensor based on CS-CNTs-GNPs nanocomposite film as the antibody immobilization matrix could exhibit good sensitivity, stability, and reproducibility for the determination of CEA.  相似文献   

5.
Li Q  Tang D  Tang J  Su B  Huang J  Chen G 《Talanta》2011,84(2):538-546
A feasible and practicable amperometric immunoassay strategy for sensitive screening of carcinoembryonic antigen (CEA) in human serum was developed using carbon nanotube (CNT)-based symbiotic coaxial nanocables as labels. To construct such a nanocable, a thin layer of silica nanoparticles was coated on the CNT surface by sonication and sol-gel methods, and then colloidal gold nanoparticles were assembled on the amino-functionalized SiO2/CNTs, which were used for the label of horseradish peroxidase-anti-CEA conjugates (HRP-anti-CEA-Au/SiO2/CNT). In the presence of analyte CEA, the sandwich-type immunocomplex was formed on an anti-CEA/Au/thionine/Nafion-modified glassy carbon electrode by using HRP-anti-CEA-Au/SiO2/CNTs as detection antibodies. To embody the advantages of the protocol, the analytical properties of variously modified electrodes were compared in detail on the basis of different nanolabels. Under optimal conditions, the cathodic peak currents of the electrochemical immunosensor were proportional to the logarithm of CEA concentration over the range from 0.01 to 12 ng mL−1 in pH 5.5 HAc-NaAc containing 5 mM H2O2. At a signal-to-noise ratio of 3, the detection limit (LOD) is 5 pg mL−1 CEA. Intra- and inter-assay coefficients of variation were below 9.5%. Meanwhile, the selectivity and stability of the immunosensor were acceptable. In addition, the technique was evaluated by spiking CEA standards in pH 7.4 PBS and with 35 clinical serum specimens, receiving excellent accordance with results from commercially available electrochemiluminescent enzyme-linked immunoassay.  相似文献   

6.
As a kind of glycoprotein, carcinoembryonic antigen (CEA) is the important tumor marker for clinical diagnosis of the presence or recurrence of cancer. In this work, a novel label-free resonance light scattering (RLS) spectral CEA assay was developed based on the combination of highly selective immunoreaction and ultrasensitive RLS technique. In Tris–HCl buffer solution (pH 7.5), the specific immunoreaction between CEA antigen and mouse anti-CEA formed immune complexes which had a maximum RLS spectral peak at 389.0 nm, with the existence of physiological saline and polyethylene glycol 20,000 (PEG 20,000). Under the optimal conditions, the magnitude of enhanced RLS intensity (ΔIRLS) was proportional to the concentration of CEA in the range from 0.1 to 60 ng mL−1, with a detection limit (LOD, 3σ) of 0.03 ng mL−1. The characteristics of RLS, the CEA immunocomplex, the immune response, the ratio of CEA antigen and mouse anti-CEA, and the optimum conditions of the immunoreaction have been investigated. The CEA concentrations of 20 serum specimens detected by the developed assay showed consistent results in comparison with those obtained by commercially available enzyme-linked immunosorbent assay (ELISA) kit. And this method has many satisfying merits including label-free, sensitivity and high selectivity.  相似文献   

7.
A simple and sensitive electrochemical immunoassay protocol was developed for the detection of carcinoembryonic antigen (CEA) using nanosilver-doped DNA polyion complex membrane (PIC) as sensing interface. To construct such an immunosensor, double-stranded DNA was initially assembled onto the surface of thionine/Nafion-modified screen-printed carbon electrode to adsorb silver ions with positive charges, then silver ions were reduced to nanosilver particles with the aid of NaBH4, and then anti-CEA antibodies were immobilized on the nanosilver surface. Gold nanoparticles conjugated with horseradish peroxidase-labeled anti-CEA were employed as signal antibodies for the detection of CEA with a sandwich-type assay format. Under optimal conditions, the immunosensor exhibited a dynamic range of 0.03-32 ng mL−1 with a low detection limit of 10 pg mL−1 CEA. Intra- and inter-assay imprecision (CVs) were <9.5% and 6.5%, respectively. The response could remain 90.1% of the original current at 30th day. 50 real samples were evaluated using the immunosensor and the enzyme-linked immunosorbent assay, respectively, and received in accordance with those two methods.  相似文献   

8.
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene–carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (−0.1 to 0.4 V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL−1 to 40 ng mL−1 with a limit of detection down to 0.03 pg mL−1 (S N−1 = 3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.  相似文献   

9.
CeO2-deposited mesoporous silica nanoparticles were synthesized as a probe to determine carcinoembryonic antigen (CEA) in serum by inductively coupled plasma-mass spectrometry (ICP-MS). The prepared mesoporous nanoparticles were modified and tagged to the target for sandwich-type immunoassay. Fe3O4 magnetic nanoparticles (MNPs) were also synthesized and immobilized with antibody to extract the target biomarker. The calibration curve of the synthesized CeO2-deposited silica nanoparticles, which was plotted by the signal ratio of 140Ce/57Fe measured by ICP-MS vs. the concentration of CEA, showed excellent linearity and sensitivity owing to the signal amplification and low spectral interference. Under optimal conditions, the sandwich-type analytical method was applied to determine CEA in serum spiked in the range of 0.001–5 ng mL−1 and showed a limit of detection of 0.36 ng mL−1. Since the deposited CeO2 in the mesoporous silica layer can be substituted by other metal compounds, various kinds of metal-deposited nanoparticles can be prepared as probe materials for multiplex detection in bioanalysis.  相似文献   

10.
Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA – prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5 ng mL−1, 80 pg mL−1, and 800 fg mL−1 when arraying the PSA antibody, H117 at the concentration 15 μg mL−1, 35 μg mL−1, and 154 μg mL−1, respectively. We further investigated PSA spiked into human female serum in the range of 800 fg mL−1 to 500 ng mL−1. The microarray showed a LOD of 800 fg mL−1 and a dynamic range of 800 fg mL−1 to 80 ng mL−1 in serum spiked samples.  相似文献   

11.
A novel class of redox-active molecular tags, poly(o-phenylenediamine)-carried nanogold particles (GPPDs), was first synthesized and functionalized with horseradish peroxidase-anti-prolactin conjugates (HRP-anti-PRL). Thereafter, a specific sandwich-type electrochemical immunoassay was designed for determination of prolactin (PRL) by using GPPD-labeled HRP-anti-PRL conjugates as molecular tags on anti-PRL antibody-modified glassy carbon electrode. Compared with pure gold nanoparticles and poly(o-phenylenediamine) microspheres, the as-prepared GPPDs increased the surface coverage of the nanostructures, and enhanced the immobilization amount of biomolecules. Several labeling protocols compromising GPPD-labeled HRP-anti-PRL, nanogold particles-labeled HRP-anti-PRL and poly(o-phenylenediamine) microspheres-labeled HRP-anti-PRL, were investigated for detection of PRL, and improved analytical features were obtained with the GPPD-based strategy. With the GPPD labeling method, dependence of the electrochemical signals on the incubation time and pH of the assay solution were also studied. The strong attachment of HRP-anti-PRL to the GPPDs resulted in a good repeatability and intermediate reproducibility down to 9.8%. The dynamic concentration range spanned from 0.5 to 180 ng mL−1 PRL with a detection limit of 0.1 ng mL−1 at the 3Sblank level. No significant differences at the 95% confidence level were encountered in the analysis of 10 spiked blank cattle serum samples between the developed immunoassay and enzyme-linked immunosorbent assay method for determination of PRL.  相似文献   

12.
A novel homogeneous immunoassay based on Förster resonance energy transfer for sensitive detection of tumor, e.g., marker with carcinoembryonic antigen (CEA), was proposed. The assay was consisted of polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor. In presence of CEA, the bio-affinity between antigen and antibody made the QDs and AuNPs close enough, thus the photoluminescence (PL) quenching of CdTe QDs occurred. The PL properties could be transformed into the fluorometric variation, corresponding to the target antigen concentration, and could be easily monitored and analyzed with the home-made image analysis software. The fluorometric results indicated a linear detection range of 1–110 ng mL−1 for CEA, with a detection limit of 0.3 ng mL−1. The proposed assay configuration was attractive for carcinoma screening or single sample in point-of-care testing, and even field use. In spite of the limit of available model analyte, this approach could be easily extended to detection of a wide range of biomarkers.  相似文献   

13.
In this work, we reported a scanometric assay system based on the aptamer-functionalized silver nanoparticles (apt-AgNPs) for detection of platelet-derived growth factor-BB (PDGF-BB) protein. The aptamer and ssDNA were bound with silver nanoparticles by self-assembly of sulfhydryl group at 5′ end to form the apt-AgNPs probe. The apt-AgNPs probe can catalyze the reduction of metallic ions in color agent to generate metal deposition that can be captured both by human eyes and a flatbed scanner. Two different color agents, silver enhancer solution and color agent 1 (10 mM HAuCl4 + 2 mM hydroquinone) were used to develop silver and gold shell on the surface of AgNPs separately. The results demonstrated that the formation of Ag core–Au shell structure had some advantages especially in the low concentrations. The apt-AgNPs probe coupled with color agent 1 showed remarkable superiority in both sensitivity and detection limit compared to the apt-AuNPs system. The apt-AgNPs system also produced a wider linear range from 1.56 ng mL−1 to 100 ng mL−1 for PDGF-BB with the detection limit lower than 1.56 ng mL−1. The present strategy was applied to the determination of PDGF-BB in 10% serum, and the results showed that it had good specificity in complex biological media.  相似文献   

14.
To detect a biomarker for lung cancer, carcinoembryonic antigen (CEA), a highly sensitive, selective, rapid and portable immunosensor based on immunomagnetic separation and chemiluminescence immunoassay was introduced. A sandwich scheme assay has been utilized with horseradish peroxidase (HRP) labeled anti-CEA antibody and immunomagnetic beads (IMBs). The presence of target protein CEA caused the formation of the sandwich structures (IMBs-CEA-HRP labeled antibody). IMBs were applied to capture CEA and immobilize CEA through the external magnetic field. The HRP at the surface of the antibody catalytically oxidized the luminescence substrate to generate optical signals which were detected by a portable home-made luminometer and which were directly proportional to the concentration of CEA in the samples. The signals were dependent on CEA concentrations in a linear range from 0 to 50 ng mL−1. The limit of detection (LOD) of this method was as low as 5.0 pg mL−1 (S/N = 3). The novel immunosensor was highly sensitive with an assay time of <35 min. The intra- and inter-assay coefficients of variation were <10%. The anti-CEA antibody can be bound to the bead efficiently with a conjugation rate of 73%. IMBs could be stored in 4 °C protecting from light for 2 months without obvious reduction of biological activity. Human reference sera mixed with various concentrations of CEA were tested with the proposed method and commercial enzyme-linked immunosorbent assay (ELISA) kit, and a good linear relationship was obtained. This proposed technique demonstrated an excellent performance for quantifying CEA and was expected to be used for clinical testing.  相似文献   

15.
A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, α-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL−1, 1.0-500 ng mL−1, 1.0-500 U mL−1 and 3.0-500 U mL−1 with limits of detection of 0.68 ng mL−1, 0.95 ng mL−1, 0.99 U mL−1 and 2.30 U mL−1 at 3σ, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.  相似文献   

16.
A one-step immunochromatographic assay (ICA) was developed for the detection of seven kinds of cephems in milk. Polyclonal antibodies (PcAb) with group-specific to cephems were raised in rabbits after immunization with cephalexin-keyhole limpet hemocyanin (KLH) conjugate. The specificity of anti-sera was determined by indirect competitive enzyme-linked immunosorbent assay (icELISA), and the 50% inhibitions (IC50) of cephalexin and cefadroxil were obtained at 1.5 ng mL−1; IC50 of cefatiofur, cefapirin, cefazolin, cefalothin and cefotaxine were 4, 3.7, 3.2, 4.5 and 5 ng mL−1, respectively. The PcAb against cephems were conjugated to colloidal gold particles as the detection reagent for ICA strips to test for cephems. This method achieved semi-quantitative detection of cephems in <5 min, with high sensitivity to cephalexin and cefadroxil (both 0.5 ng mL−1). At the same time, cefatiofur, cefapirin, cefazolin, cefalothin and cefotaxine were detected at <100 ng mL−1 in spiked processed-milk samples. This method was compared with an enzyme-linked immunosorbent assay by testing 40 milk samples, and the positive samples were validated by a high-performance liquid chromatographic method, with an agreement rate of 100% for both comparisons. In conclusion, the method was rapid and accurate for the multi-residue detection of cephems in milk.  相似文献   

17.
Polyclonal antibody (PAb) with broad-specificity for O,O-diethyl organophosphorus pesticides (OPs) against a generic hapten, 4-(diethoxyphosphorothioyloxy)benzoic acid, was produced. The obtained PAb showed high sensitivity to seven commonly used O,O-diethyl OPs in a competitive indirect enzyme-linked immunosorbent assay (ciELISA) using a heterologous coating antigen, 4-(3-(diethoxyphosphorothioyloxy)phenylamino)-4-oxobutanoic acid. The 50% inhibition value (IC50) was 348 ng mL−1 for parathion, 13 ng mL−1 for coumaphos, 22 ng mL−1 for quinalphos, 35 ng mL−1 for triazophos, 751 ng mL−1 for phorate, 850 ng mL−1 for dichlofenthion, and 1301 ng mL−1 for phoxim. The limit of detection (LOD) met the ideal detection criteria of all the seven OP residues. A quantitative structure-activity relationship (QSAR) model was constructed to study the mechanism of antibody recognition using multiple linear regression analysis. The results indicated that the frontier-orbital energies (energy of the highest occupied molecular orbital, EHOMO, and energy of the lowest unoccupied molecular orbital, ELUMO) and hydrophobicity (log of the octanol/water partition coefficient, log P) were mainly responsible for the antibody recognition. The linear equation was log(IC50) = −63.274EHOMO + 15.985ELUMO + 0.556 log P − 25.015, with a determination coefficient (r2) of 0.908.  相似文献   

18.
This paper introduces strategies for enhancement of a surface plasmon resonance (SPR) signal by adopting colloidal gold nanoparticles (AuNPs) and a SiO2 layer on a gold surface. AuNPs on SiO2 on a gold surface were compared with an unmodified gold surface and a SiO2 layer on a gold surface with no AuNPs attached. The modified surfaces showed significant changes in SPR signal when biomolecules were attached to the surface as compared with an unmodified gold surface. The detection limit of AuNPs immobilized on a SPR chip was 0.1 ng mL−1 for the prostate-specific antigen (PSA), a cancer marker, as measured with a spectrophotometer. Considering that the conventional ELISA method can detect ∼10 ng mL−1 of PSA, the strategy described here is much more sensitive (∼100 fold). The enhanced shift of the absorption curve resulted from the coupling of the surface and particle plasmons by the SiO2 layer and the AuNPs on the gold surface.  相似文献   

19.
Here we designed a new electrochemical immunoassay protocol for determination of carcinoembryonic antigen (CEA) using nanoplatinum-enclosed gold nanocores (Pt@Au) as catalytically promoted nanolabels on the carbon nanospheres and graphene-modified immunosensor. The Pt@Au nanolabels were synthesized and functionalized with monoclonal anti-CEA antibodies and glucose oxidase (GOx). Using the functional Pt@Au nanolabels as molecular tags, the assay was implemented relative to glucose–hydroquinone system with a sandwich-type immunoassay. Initially, the added glucose was oxidized to gluconolactone and H2O2 by the labeled GOx, and then the generated H2O2 was reduced with the help of platinum nanoparticles, leading to the production of oxygen. The self-produced oxygen could promote the re-oxidation of the glucose, thus resulting in the dual amplification of the electrochemical signal. Several nanolabels, such as multiarmed star-like platinum nanowires, hollow platinum nanospheres and Pt@Au nanostructures, were investigated for CEA detection and improved analytical features were obtained with the Pt@Au nanostructures. Under optimal conditions, the Pt@Au-based immunoassay displayed a wide working range from 0.001 to 120 ng mL−1 with a low detection limit of 0.5 pg mL−1 CEA at 3sB. Intra- and inter-assay coefficients of variation were <10.9%. The system was evaluated with 10 clinical serum samples, receiving good accordance with results from enzyme-linked immunosorbent assay method.  相似文献   

20.
In this work, an ultrasensitive peroxydisulfate electrochemiluminescence (ECL) immunosensor using in situ generation of l-homocysteine (l-Hcys) for signal amplification was successfully constructed for detection of carcinoembryonic antigen (CEA). In the reaction of biological methylation, S-adenosyl-l-homocysteine hydrolase (SAHH) catalyzed the reversible hydrolysis of S-adenosyl-l-homocysteine (SAH) to produce l-Hcys, which was inducted into ECL system to construct the immunosensor for signal amplification in this work. Simultaneously, Gold and palladium nanoparticles functionalized multi-walled carbon nanotubes (Au-PdNPs@MWCNTs) were prepared, which were introduced to immobilize the secondary antibody (Ab2) and SAHH with high loading amount and good biological activity due to their improved surface area and excellent biocompatibility. Then the proposed ECL immunosensor was developed by a sandwich-type format using Au-PdNPs@MWCNTs-SAHH-Ab2 as tracer and graphene together with AuNPs as substrate. Besides the enhancement of Au-PdNPs, the enzymatic catalysis reaction also amplified the ECL signal dramatically, which was achieved by efficient catalysis of the SAHH towards the hydrolysis of SAH to generate improved amount of l-Hcys in situ. Furthermore, due to the special interaction between Au-PdNPs and -SH or -NH2 in l-Hcys, l-Hcys would gradually accumulate on the surface of the immunosensor, which greatly enhanced the concentration of l-Hcys on the immunosensor surface and further improved the ECL intensity. With the amplification factors above, a wide linear ranged from 0.1 pg mL−1 to 80 ng mL−1 was acquired with a relatively low detection limit of 33 fg mL−1 for CEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号