首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Cholesterol oxidase biosensor has been constructed by using bovine serum albumin and glutaraldehyde as cross linker to immobilize cholesterol oxidase and cholesterol esterase on a glassy carbon electrode modified with Nafion and methyl viologen. The biosensor has been used to determine total cholesterol in blood. The linear range of the determination is 2.5×10~7 to 1.0×10-4 mol/L. The detection limit is about 5.0×10~8 mol/L. The response time is 12 s. This biosensor has the advantage of high selectivity, sensitivity and short response time.  相似文献   

2.
A new biosensor for the amperometric detection of hydrogen peroxide was developed based on the co-immobilization of horseradish peroxidase (HRP) and methylene blue on a β-type zeolite modified glassy carbon electrode without the commonly used bovine serum albumin-glutaraldehyde. The intermolecular interaction between enzyme and zeolite matrix was investigated using FT-IR. The cyclic voltammetry and amperometric measurement demonstrated that methylene blue co-immobilized with HRP in this way displayed good stability and could efficiently transfer electrons between immobilized HRP and the electrode. The sensor responded rapidly to H2O2 in the linear range from 2.5 × 10–6 to 4.0 × 10–3 M with a detection limit of 0.3 μM. The sensor was stable in continuous operation.  相似文献   

3.
We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol?L?1 to 1 μmol?L?1 concentration range. The lower detection limit is 0.1 nmol?L?1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results. Figure
Immunoassay for ractopamine based on glassy carbon electrode modified with gold nanoparticles and a film of a composite made from poly (arginine) and multi-walled carbon nanotubes was proposed. Under optimal conditions, the peak currents obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol?L?1 to 1 μmol?L?1 concentration range. The detection limit is 0.1 nmol?L?1.  相似文献   

4.
Zhou  Ying  Wang  Peilong  Su  Xiaoou  Zhao  Hong  He  Yujian 《Mikrochimica acta》2014,181(15):1973-1979

We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The lower detection limit is 0.1 nmol•L−1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results.

Immunoassay for ractopamine based on glassy carbon electrode modified with gold nanoparticles and a film of a composite made from poly (arginine) and multi-walled carbon nanotubes was proposed. Under optimal conditions, the peak currents obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The detection limit is 0.1 nmol•L−1.

  相似文献   

5.
The electrochemical oxidation of guanosine-5??-monophosphate (GMP) was studied with a glassy carbon electrode modified with a composite made from graphene and multi-walled carbon nanotubes. GMP undergoes an irreversible oxidation process at an oxidation peak potential of 987?mV in phosphate buffer solution. Compared to other electrodes, the oxidation peak current of GMP with this electrode was significantly increased, and the corresponding oxidation peak potential negatively shifted, thereby indicating that the modified material exhibited electrochemical catalytic activity towards GMP. Chronocoulometry demonstrates that the material also effectively increases the surface area of the electrode and increases the amount of GMP adsorbed. Under the optimum conditions, the oxidation current is proportional to the GMP concentration in the range from 0.1 to 59.7???M with a correlation coefficient of 0.9991. The detection limit is 0.025???M (at S/N?=?3).
Figure
We have developed an electrochemical method for sensitive determination of guanosine-5??-monophosphate (1) based on graphene and multi-walled carbon nanotubes modified glassy carbon electrode by amperometry.  相似文献   

6.
We describe a method for detecting DNA methylation. It is based on direct oxidation of DNA bases at a glassy carbon electrode (GCE) modified with film of a multiwalled carbon nanotube-β-cyclodextrin composite. This nano-structured film causes a strong enhancement on the oxidation current of DNA bases due to its large effective surface area and extraordinary electronic properties. Well-defined peaks were obtained as a result of electro-oxidation of guanine (at 0.67 V), adenine (at 0.92 V), thymine (at 1.11 V), cytosine (at 1.26 V), and 5-methylcytosine (at 1.13 V; all data vs. saturated calomel electrode (SCE)). The potential difference between 5-methylcytosine and cytosine (130 mV) is large enough to enable reliable simultaneous determination and analysis. The interference by thymine can be eliminated by following the principle of complementary pairing between purine and pyrimidine bases in DNA. The modified electrode was successfully applied to the evaluation of 5-methylcytosine in a fish sperm DNA, the methylation level of cytosine was found to be 7.47 %, and the analysis process took less than 1 h.  相似文献   

7.
Jianbo Jia 《Mikrochimica acta》2008,163(3-4):237-241
A novel hydrogen peroxide biosensor was fabricated that is based on horseradish peroxidase–Au nanoparticles immobilized on a viologen-modified glassy carbon electrode (GCE) by amino cation radical oxidation in basic solution. The immobilized BAPV acts as a mediator and a covalent linker between GCE and the Au nanoparticles. The biosensor exhibited fast response, good reproducibility, and long-term stability.  相似文献   

8.
A solid bar microextraction (SBME) method containing sorbent materials 2?mg in the lumen of a porous hollow fiber membrane 2.5?cm for the extraction of carbamazepine, diclofenac and ibuprofen from river water samples is described. The desorbed analytes were analyzed using reversed-phase high performance liquid chromatography with ultraviolet detection. In order to achieve optimum performance, several extraction parameters were optimized. Of the sorbents evaluated, LiChrosorb RP-8 was the most promising. Under the optimized conditions, limits of detection from 0.7 to 0.9???g?L?1, precisions from 5.5 to 6.4% and a correlation coefficient of 0.999 were obtained for the target drugs over a concentration range of 1?C200???g?L?1. In comparison with the solid phase extraction, the SBME system offers distinct advantages due to its higher enrichment factors, lower consumption of organic solvents and time saving.
A solid bar microextraction method for the liquid chromatographic determination of trace diclofenac, ibuprofen and carbamazepine in river water  相似文献   

9.
Caifeng Ding  Fei Zhao  Jin-Ming Lin 《Talanta》2009,78(3):1148-4751
A novel and effective electrochemical immunosensor for the rapid determination of α-fetoprotein (AFP) based on carbon paste electrode (CPE) consisting of room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) and graphite. The surface of the CPE was modified with gold nanoparticles for the immobilization of the α-fetoprotein antibody (anti-AFP). By sandwiching the antigen between anti-AFP on the CPE modified with gold nanoparticles and the secondary antibody, polyclonal anti-human-AFP labeled with horseradish peroxidase (HRP-labeled anti-AFP), the immunoassay was established. The concentration of AFP was determined based on differential pulse voltammetry (DPV) signal, which was generated in the reaction between O-aminophenol (OAP) and H2O2 catalyzed by HRP labeled on the sandwich immunosensor. AFP concentration could be measured in a linear range of 0.50-80.00 ng mL−1 with a detection limit of 0.25 ng mL−1. The immunosensor exhibited high sensitivity and good stability, and would be valuable for clinical assay of AFP.  相似文献   

10.
We report on a method for electrochemical enantioselective recognition of tryptophan (Trp) enantiomers. It is based on competitive host-guest interaction between a deoxy-(2-aminoethylamino)-β-cyclodextrin (CD) bound to graphene nanosheets and the Cu(II) complexes of the Trp enantiomers via a ligand exchange mechanism. Chiral recognition was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The results reveal that the CD bound to graphene displays a stronger interaction with the Cu(II) complex of L-Trp than to that of D-Trp. The method was applied to the determination of the ratio of Trp enantiomers in mixtures.
Figure
The CD-GNs are dipped in D-Trp or L-Trp solution containing Cu(II), the complexes of metal ion with L-Trp caused more remarkable difference in the [Fe(CN)6]3?/4? than the complexes of metal ion with D-Trp.  相似文献   

11.
A carbon ceramic electrode (CCE) was fabricated from a composite consisting of sol-gel, ceramic graphite, multi-walled carbon nanotubes and the natural carotenoid crocin. The resulting sensor is shown to allow for the determination of NADH at a rather low working potential of 0.22 V (vs. Ag/AgCl). The heterogeneous electron transfer rate constant (ks) and the surface coverage of the modified electrode are 16.8 s?1 and 22 pmol·cm?2, respectively. The sensor shows excellent and linear response in solutions of pH 7.0 over the 0.5 to 100 μM NADH concentration range, a 0.1 μM detection limit, and a sensitivity of 251.3 nA·μM?1·cm?2.
Graphical abstract Schematic of the preparation of a carbon ceramic electrode modified with electropolymerized crocin on multi-walled carbon nanotubes. This sensor has a strongly decreased oxidation overpotential for NADH.
  相似文献   

12.
SiO2 nanosheets (SNS) have been prepared by a chemical method using montmorillonite as raw material and were characterized by scanning electron microscopy and X-ray diffraction. SiO2 nanosheet–Nafion nanocomposites with excellent conductivity, catalytic activity, and biocompatibility provided an extremely hydrophilic surface for biomolecule adhesion. Chitosan was used as a cross-linker to immobilize acetylcholinesterase (AChE), and Nafion was used as a protective membrane to efficiently improve the stability of the AChE biosensor. The AChE biosensor showed favorable affinity for acetylthiocholine chloride and catalyzed the hydrolysis of acetylthiocholine chloride with an apparent Michaelis–Menten constant of 134 μM to form thiocholine, which was then oxidized to produce a detectable and fast response. Based on the inhibition by pesticides of the enzymatic activity of AChE, detection of the amperometric response from thiocholine on the biosensor is a simple and effective way to biomonitor exposure to pesticides. Under optimum conditions, the biosensor detected methyl parathion, chlorpyrifos, and carbofuran at concentrations ranging from 1.0?×?10?12 to 1?×?10?10?M and from 1.0?×?10?10 to 1?×?10?8?M. The detection limits for methyl parathion, chlorpyrifos, and carbofuran were 5?×?10?13?M. The biosensor developed exhibited good sensitivity, stability, reproducibility, and low cost, thus providing a new promising tool for analysis of enzyme inhibitors.
Figure
Performances and detection pesticides of a SiO2 nanosheet biosensor  相似文献   

13.
14.
Understanding the self-assembly behavior of β-sheet peptides is important, not only in constructing bioactive peptide nanostructures, but also in inhibiting uncontrollable protein aggregation in protein-misfolding diseases. Here, the first systematic investigation of combination self-assembly between β-sheet block copolypeptides and CNTs is presented, demonstrating the presence of several different association modes during the combination self-assembly process. Bioactive β-sheet block copolypeptides can self-assemble by themselves, or can be used to functionalize CNT hybrids depending on the situation. This behavior may be important both for fabricating bioactive peptide/CNT hybrids and for controlling/inhibiting protein-misfolding diseases.  相似文献   

15.
The authors describe a voltammetric immunosensor with antibody immobilized on a glassy carbon electrode (GCE) modified with N-doped graphene (N-GS), electrodeposited gold nanoparticles (AuNPs) and chitosan (Chit). The preparation is simple and the thickness of the electrodeposited films can be well controlled. Due to the specific advantages of N-GS, AuNPs and Chit, the electrode has a large specific surface, improved conductivity, high stability. A new label-free immunosensor for the model antigen (alpha fetoprotein, AFP) detection was then designed by employing N-GS-AuNP-Chit as the antibody immobilization and signal amplification platform. Differential pulse voltammetry and electrochemical impedance spectroscopy were used for the characterization of the stepwise assembly process. Under the optimized conditions, at a typical working potential of +0.20 V (vs. SCE), and by using hexacyanoferrate as an electrochemical probe, the immunosensor has a detection limit as low as 1.6 pg mL?1 and a linear analytical range that extends from 5 pg mL?1 to 50 ng mL?1. AFP was quantified in spiked human serum samples with acceptable precision.
Graphical Abstract Schematic of sensitive and effective label-free electrochemical immunosensor for the detection of AFP based on N-GS-AuNP-Chit as signal amplification matrix.
  相似文献   

16.
A sensitive amperometric sensor has been constructed for the determination of hydrogen peroxide (HP). It is based on a glassy carbon electrode modified with a composite made from thionin, EDTA, multiwalled carbon nanotubes, and chitosan. Thionin was covalently immobilized on the surface of the electrode. The sensor exhibits a powerful electrocatalytic activity for the reduction of HP. The amperometric signal is proportional to the concentration of HP in the range from 0.2 μM to 85.0 μM, with a detection limit of 0.065 μM. The sensor displays excellent selectivity, good reproducibility and long-term stability.  相似文献   

17.
Xiuhua Wang  Pingang He 《Tetrahedron》2010,66(39):7815-7820
A novel β-cyclodextrin (β-CD) derivative containing mono-phenylamino (MPA-β-CD) was newly synthesized by classical Mitsunobu reaction in good yield, and its structure has been confirmed by 1H NMR, 13C NMR and electrospray ionization mass spectra. The compound MPA-β-CD was immobilized onto glassy carbon electrode (GCE) by diazotization, and with this modified electrode the binding behavior of MPA-β-CD for ferrocene (Fc) was investigated qualitatively, and the comparison of differential pulse voltammetry before and after immersion in ferrocene solution indicated that the MPA-β-CD immobilized GCE exhibited the molecular recognition behavior between β-CD and ferrocene.  相似文献   

18.
We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag@C modified glassy carbon (Ag@C/GC) electrode. The Ag@C core–shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag@C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag@C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 × 10−7 to 1.0 × 10−4 M with a detection limit of 4.0 × 10−8 M (S/N = 3). In addition, the proposed electrode was applied for the determination of Trp concentration in real samples and satisfactory results were obtained. The technique offers enhanced sensitivity and may trigger the possibilities of the Ag@C nanocomposite towards diverse applications in biosensor and electroanalysis.  相似文献   

19.
A hybrid of reduced graphene oxide–palladium (RGO–Pd) nano- to submicron-scale particles was simultaneously chemically prepared using microwave irradiation. The electrochemical investigation of the resulting hybrid was achieved using cyclic voltammetry and differential pulse voltammetry. RGO–Pd had a higher current response than unmodified RGO toward the oxidation of morphine. Several factors that can affect the electrochemical response were studied, including accumulation time and potential, Pd loading, scan rate, and pH of electrolyte. At the optimum conditions, the concentration of morphine was determined using differential pulse voltammetry in a linear range from 0.34 to 12 μmol L?1 and from 14 to 100 μmol L?1, with detection limits of 12.95 nmol L?1 for the first range. The electrode had high sensitivity toward morphine oxidation in the presence of dopamine (DA) and of the interference compounds ascorbic acid (AA) and uric acid (UA). Electrochemical determination of morphine in a spiked urine sample was performed, and a low detection limit was obtained. Validation conditions including reproducibility, sensitivity, and recovery were evaluated successfully in the determination of morphine in diluted human urine.  相似文献   

20.
We report on a simple and reliable method for the determination of trace cadmium ion using a glassy carbon electrode (GCE) modified with cupferron, ß-naphthol and MWCNTs. The operational mechanism consists of several steps: first, the ligand cupferron on the modified electrode reacts with Cd2+ ion to form a chelate compound. Next, this chelate is adsorbed by the carrier ß-naphthol following the principle of organic co-precipitation. Finally, the coprecipitated complex is detected by the GCE. This scheme is interesting because it combines preconcentration and electrochemical detection. Two linear responses are obtained, one in the concentration range of 5.0?×?10?11 to 1.6?×?10?8 M, the other in the range of 1.6?×?10?8 to 1.42?×?10?6 M, with a lower detection limit of 1.6?×?10?11 M. This modified GCE does not suffer from significant interferences by Cu(II), Hg(II), Ag(I), Fe(III), Pb(II), Cr(III), Zn(II), NO3?, Cl?, SO 4 2? ions and EDTA. The response of the electrode remained constant for at least 3 weeks of successive operation. The method presented here provides a new way for the simultaneous separation, enrichment, and electrochemical detection of trace cadmium ion.
Figure
Separation, enrichment and electrochemical detection of trace cadmium ion were simultaneously and synchronously carried through on the electrode modified with cupferron, ß-naphthol, and multiwalled carbon nanotubes. It shows higher selectivity, excellent sensitivity and good stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号