首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wen Pan 《Talanta》2007,73(4):651-655
An amperometric sensor for the detection of difenidol, a tertiary amine-containing analyte, was proposed. Ruthenium(II) tris(bipyridine)/multi-walled carbon nanotubes/Nafion composite film was suggested to modify the glassy carbon electrode. The modified electrode was shown to be an excellent amperometric sensor for the detection of difenidol hydrochloride. The linear range is from 1.0 × 10−6 to 3.3 × 10−5 M with a correlation coefficient of 0.998. The limit of detection was 5 × 10−7 M, which was obtained through experimental determination based on a signal-to-noise ratio of three. The sensor was employed to the determination of the active ingredients in the tablets containing difenidol hydrochloride.  相似文献   

2.
Trace amounts of Sc(III) and Y(III) can react with [PW11O39]7− to form the ternary Keggin-type complexes: [P(ScIIIW11)O40]6− and [P(YIIIW11)O40]6− having high molar absorptivities in the UV region. Since the rate of the complex-formation was very rapid and the kinetically stable ternary anions migrated in the capillary with different electrophoretic mobilities, the complex-formation reaction was applied to the simultaneous CE determination of Sc(III) and Y(III) with direct UV detection at 250 nm. For both Sc(III) and Y(III), the pre-column method provided linear calibration curves in the range of 2 × 10−7 to 1 × 10−5 M; the respective detection limits were 1 × 10−7 M (the signal-to-noise ratio = 3). The proposed method was successfully applied to the determination of Sc(III) and Y(III) in river water.  相似文献   

3.
The phenanthrene complex of ruthenium(II), [Ru(η6-phenanthrene)(1,5-η5-cyclooctadienyl)]PF6 (2c), is prepared by the reaction of Ru(η4-1,5-COD)(η6-1,3,5-COT) (1) with phenanthrene and HPF6 in 65% yield. Similar treatments with di- tri-, tetra- and pentacyclic arenes give corresponding polycyclic arene complexes, [Ru(η6-polycyclic arene)(1-5-η5-cyclooctadienyl)]PF6 [polycyclic arene = naphthalene (2b), anthracene (2d), triphenylene (2e), pyrene (2f) and perylene (2g)] in 46-90% yields. The molecular structure of the perylene complex 2g is characterized by X-ray crystallography. Reaction of 2c with NaBH4 gives a mixture of the 1,5- and 1,4-COD complexes of ruthenium(0), Ru(η6-phenanthrene)(η4-1,5-COD) (3c) and Ru(η6-phenanthrene)(η4-1,4-COD) (4c) in 76% in 1:8 molar ratio. The arene exchange reactions among cationic complexes [Ru(η6-arene)(1-5-η5-cyclooctadienyl)]PF6 (2) showed the coordination ability of arenes in the following order: benzene ∼ triphenylene > phenanthrene > naphthalene > perylene ∼ pyrene > anthracene, suggesting the benzo fused rings, particularly those of acenes, decreasing thermal stability of the arene complex.  相似文献   

4.
A novel kinetic chemiluminescent method using the stopped-flow mixing technique has been investigated for the rapid and sensitive determination of citrate and pyruvate. The method is based on a tris(2,2′-bipyridiyl)ruthenium(III) (Ru(bpy)33+) chemiluminescence (CL) reaction. Ru(bpy)33+ was generated in the mixing chamber by oxidising tris(2,2′-bipyridyl)ruthenium(II) with cerium(IV). After selecting the best operating parameters, calibration graphs were obtained over the concentration ranges 0.38-38 μg ml−1 and 8.7-1300 ng ml−1 for citrate and pyruvate, respectively. The limits of detection were 0.1 μg ml−1 for citrate and 0.3 ng ml−1 for pyruvate. Based on the differential rate of the chemiluminescent reaction corresponding to citrate and pyruvate, a very simple kinetic procedure was developed for the simultaneous determination of both compounds. Mixtures of citrate and pyruvate in ratios between 15:1 and 1.5:1 were satisfactorily resolved. The proposed method was successfully applied to the determination of citrate in pharmaceutical formulations, pyruvate in animal blood serum and both compounds in human urine.  相似文献   

5.
A method was developed to determine traces of trifluoroacetic acid as impurity in synthetic or semi-synthetic drugs as antibiotics, macropeptides, etc. Capillary electrophoresis in combination with capacitively coupled contactless conductivity detection (CE-C4D) was used due to lack of UV absorbance property of trifluoroacetic acid (TFA). The optimized method took less than 1 min with good linearity (R2 = 0.9995) for trifluoroacetic acid concentration from 2 to 100 ppm. It also has a good repeatability expressed by the relative standard deviation (% RSD) which is 1.2 and 2.1% for intraday and interday precision, respectively, at 50 ppm TFA, and good sensitivity with 0.34 ppm, 1.2 ppm LOD and LOQ, respectively. In addition, the content of TFA in synthetic drug, was determined using the validated method which gave good linearity (R2 = 0.9996) for trifluoroacetic acid spiked into drug in a concentration range of 2-80 ppm, with good intraday repeatability of 2.0%.The analysis is performed in a background electrolyte composed of 20 mM morpholinoethane-sulfonic acid (Mes) and 20 mM l-histidine (l-His) pH 6.1. Cetyltrimethylammonium bromide (CTAB) was added as flow modifier in a concentration (0.2 mM) lower than the critical micellar concentration. Ammonium formate 6 ppm was used as internal standard. The applied voltage was 30 kV in reverse polarity. A fused silica capillary with 75 μm internal diameter and total length 47 cm (31 cm to C4D detector and 37 cm to DAD detector) was used.  相似文献   

6.
Ying Gao  Yuanhong Xu  Jing Li 《Talanta》2009,80(2):448-453
CE/Ru(bpy)32+ electrochemiluminescence (ECL) system with the assistance of ionic liquids (ILs) was successfully established for sensitive determination of verticine and verticinone in Bulbus Fritillariae for the first time. Migration behavior of alkaloid largely relies on the hydrogen bonding interactions between alkyl imidazolium cations in ILs and the alkaloids. Running buffer containing 40 mmol/L 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) IL-8 mmol/L phosphate resulted in significant changes in separation selectivity for alkaloids with similar structures. The highest sensitivity of the detection was obtained by maintaining the detection potential at 1.2 V. Under the optimized conditions, relative standard derivations of the ECL intensity and the migration time were 3.27 and 2.84% for verticine and 4.42 and 1.69% for verticinone, respectively. The standard curves were linear between 1 × 10−8 and 1 × 10−6 mol/L for verticine and between 5 × 10−8 and 1 × 10−6 mol/L for verticinone, respectively. Detection limits of 1.25 × 10−10 mol/L for verticine and 1 × 10−10 mol/L for verticinone were obtained (S/N = 3). Developed method was successfully applied to determine the amounts of alkaloids in Bulbus Fritillariae.  相似文献   

7.
Multiple response simultaneous optimization by using the desirability function was used for the development of a capillary electrophoresis method for the simultaneous determination of four active ingredients in pharmaceutical preparations: vitamins B6 and B12, dexamethasone and lidocaine hydrochloride. Five responses were simultaneously optimized: the three resolutions, the analysis time and the capillary current. This latter response was taken into account in order to improve the quality of the separations. The separation was carried out by using capillary zone electrophoresis (CZE) with a silica capillary and UV detection (240 nm). The optimum conditions were: 57.0 mmol l−1 sodium phosphate buffer solution, pH 7.0 and voltage = 17.2 kV. Good results concerning precision (CV lower than 2%), accuracy (recoveries ranged between 98.5 and 102.6%) and selectivity were obtained in the concentration range studied for the four compounds. These results are comparable to those provided by the reference high performance liquid chromatography (HPLC) technique.  相似文献   

8.
In this work, a stable electrogenerated chemiluminescence (ECL) detector was developed. The detector was prepared by packing cation-exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)32+ can be compensated by adding a small amount of Ru(bpy)32+ into solution phase. Coupled with high-performance liquid chromatography separation, the detector has been used for determination of itopride hydrochloride in human serum. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of itopride hydrochloride in the range of 1.0 × 10−8 g mL−1 to 1.0 × 10−6 g mL−1 and the detection limit was 3 × 10−9 g mL−1 (S/N = 3). The as-prepared ECL detector displayed good sensitivity and stability.  相似文献   

9.
Lopez  C.  Nehme  R.  Claude  B.  Morin  Ph.  Max  J. P.  Pena  R.  Pelissou  M.  Ribet  J. P. 《Chromatographia》2012,75(1-2):25-32

Capillary electrophoresis (CE) coupled to a capacitively coupled contactless conductivity detector (C4D) was used for the determination in a single analysis of a pharmaceutical drug and its counter-ion. Dual-opposite end injection (DOI) was used to introduce hydrodynamically the analytes at each end of the capillary. No modification of the commercial apparatus is required. After applying the voltage, the cations and anions migrate from each end of the capillary in opposite directions toward the detector placed near the cathode outlet. The electrophoretic conditions were initially developed with three test drugs (chlorpheniramine maleate, metoprolol tartrate, clomiphene citrate) and then applied to two Vinca alkaloids (catharanthine sulfate, vinorelbine ditartrate). The 10 mM histidine–50 mM acetic acid buffer (pH 4.1)–methanol 90:10 (v/v) electrolyte was suitable for the analysis of these high or medium mobile anions by CE–C4D due to its low conductivity background and high buffer capacity. Finally, the CE procedure developed was successfully validated for catharanthine sulfate. The method developed herein is fast (<10 min) and accurate (repeatability on migration time < 0.6% and peak areas < 1.3%, n = 6).

  相似文献   

10.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

11.
A nitrite sensor based on immobilized Dawson-type tungstophosphate α-K7[H4PW18O62]·18H2O (PW18) in multilayers of charged polyelectrolyte poly(allylamine hydrochloride) (PAH) on a glassy carbon electrode is described. A nitrite sensor manufactured with 10 layers has a sensitivity of ∼4 nA/μM nitrite, fast response time (<6 s), low detection limit (∼0.1 μM), high selectivity towards endogenous interferences such as nitrate and molecular oxygen, a linear range from 0.1 μM to at least 20 mM nitrite and was stable for at least 2 months. In addition, such nitrite sensors can operate in a pH range from 1 to 9, and the sensitivity can be increased by increasing the number of layers at the expense of increasing the response time.  相似文献   

12.
Gui-Fen Jie 《Talanta》2007,71(4):1476-1480
Electrogenerated chemiluminescence (ECL) of CdS nanotubes in aqueous solution and its sensing application were studied by entrapping the CdS nanotubes in carbon paste electrode. Two ECL peaks were observed at −0.9 V (ECL-1) and −1.2 V (ECL-2), respectively, when the potential was cycled between 0 and −1.6 V. The electrochemically reduced nanocrystal species of CdS nanotubes could collide with the oxidized species in an annihilation process to produce the peak of ECL-1. The electron-transfer reaction between the reduced CdS nanocrystal species and oxidant coreactants such as S2O82−, H2O2, and reduced dissolved oxygen led to the appearance of the ECL-2 peak. Based on the enhancing effect of H2O2 on ECL-2 intensity, a novel CdS ECL sensor was developed for H2O2 detection. The sensor exhibited a detection limit of 0.1 μM and a linear range from 0.5 μM to 0.01 mM. The relative standard deviations of five replicate determinations of 5 μM H2O2 was 2.6%. In addition, the ECL spectrum in aqueous solution also exhibited two peaks at 500 and 640 nm, respectively.  相似文献   

13.
Proton-conducting membranes based on phosphotungstic acid (PWA) and 3-glycidoxypropyl-trimethoxysilane (GPTMS) was investigated as the electrolyte for low temperature H2/O2 fuel cell. Parameters determining the conductivity and elastic modulus of the membranes were characterized by thermogravimetry/differential thermal analysis and infrared spectroscopic measurements. The composite containing 5% of PWA exhibited an elastic modulus below 100 MPa at room temperature and a high proton conductivity of 1.0 × 10−2 S/cm at 80 °C and 100% RH. Low elastic modulus of the membrane was found to be useful for both the reduction of the membrane thickness and the better contact with the electrodes. The performance of the membrane electrode assemblies (MEA) was systematically studied as an effect of preparation conditions. A maximum power density of 45 mW/cm2 and the current density of 175 mA/cm2 at 0.2 V were achieved at 90 °C and 100% RH for the membrane of 5PWA·95GPTMS composition and 0.2 mm thickness.  相似文献   

14.
Singlet-triplet energy gaps in cyclopenta-2,4-dienylidene, as well as its 2- or 3-halogenated derivatives, are compared and contrasted with their sila, germa, stana, and plumba analogues; at HF/6-31G* and B3LYP/ 6-311++G(3df, 2p) levels of theory. Energy gaps (ΔGt-s), between triplet (t) and singlet (s) states, appear linearly proportional to: (i) the size of the group 14 divalent element (M = C, Si, Ge, Sn and Pb), (ii) the angle ∠C-M-C, and (iii) the ΔG(LUMO-HOMO) of the singlet state involved. The magnitude of ΔGt-s, for each 2- and/or 3-substituted species studied, increases with an order of: carbenes < silylenes < germylenes < stanylenes < plumbylenes. This order reverses for the barriers of the ring puckering. The puckering occurs with more ease for every singlet, compared to its corresponding triplet form.Regardless of the group 14 element (M) employed, every 3-halo-substituted species is more stable than the corresponding 2-halo-substituted isomer. For M = Pb, Sn and/or Ge; 3-halo-substituted species have higher ΔGt-s than their corresponding 2-halo-substituted analogues. For M = Si, similar ΔGt-s are found for 2- and 3-halogenated isomers. For M = C, 3-halo-substituted species have lower ΔGt-s than their corresponding 2-halo-substituted analogues.Every cyclic singlet has a larger ∠C-M-C angle, than its corresponding cyclic triplet state, except for 3-halosilacyclopenta-2,4-dienylidenes where triplet has a larger ∠C-M-C angle than its corresponding singlet state.  相似文献   

15.
In this paper, an ordered mesoporous alumina coating was prepared and applied to capillary microextraction (CME) of trace Co, Ni and Cd for the first time. The coated capillary was used for on-line coupling CME with inductively plasma mass spectrometry (ICP-MS) for the determination of trace metals of Co, Ni and Cd. The porous structure of Al2O3 coating was examined by SEM and TEM. The effects of the extraction parameters including pH, sample flow rate and volume, elution solution and interfering ions on the recovery of analytes have been investigated and optimized. Under the optimized conditions, the limits of detection were 0.33, 1.5 and 1.4 ng L−1 for Co, Ni and Cd, respectively, with a preconcentration factor of 10 times. The precisions for all investigated elements were 2.7, 4.1 and 2.5% (c = 0.05 ng L−1, n = 7), for Co, Ni and Cd, respectively, and the sample frequency was 8 h−1.The proposed method was successfully applied for the analysis of trace metals in water, rice and urine samples with the recovery of 94-105%. In order to validate the proposed method, two certified reference materials of GBW 0913 human urine and NIES No.10-b rice flour were analyzed, and the determination values are in good agreement with the certified values. The ordered mesoporous Al2O3 coated capillary can be used more than 20 times without decreasing the extraction efficiency.  相似文献   

16.
Qian L  Yang X 《Talanta》2006,68(3):721-727
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.  相似文献   

17.
Zheng L  Xiong L  Zheng D  Li Y  Liu Q  Han K  Liu W  Tao K  Yang S  Xia J 《Talanta》2011,85(1):43-48
In this paper, a polydopamine (PDA) film is electropolymerized on the surface of bilayer lipid membrane (BLM) which is immobilized with horseradish peroxidase (HRP). The coverage of the PDA film on HRP/BLM electrode is monitored by electrochemical impedance spectroscopy (EIS). The electrocatalytic reduction of H2O2 at the PDA/HRP/BLM electrode is studied by means of cyclic voltammetry (CV). The biosensor has a fast response to H2O2 of less than 5 s and an excellent linear relationship is obtained in the concentration range from 2.5 × 10−7 to 3.1 × 10−3 mol L−1, with a detection limit of 1.0 × 10−7 mol L−1 (S/N = 3). The response current of BLM/HRP/PDA biosensor retains 84% of its original response after being stored in 0.1 mol L−1 pH 7.0 PBS at 4 °C for 3 weeks. The selectivity, repeatability, and storage stability of PDA/HRP/BLM biosensor are greatly enhanced by the coverage of polydopamine film on BLM.  相似文献   

18.
The microstructure and phase stability of nanocrystalline mixed oxide LuxCe1−xO2−y (x=0-1) are described. Nano-sized (3-4 nm) oxide particles were prepared by the reverse microemulsion method. Morphological and structural changes upon heat treatment in an oxidizing atmosphere were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and Yb3+ emission spectroscopy, the latter ion being present as an impurity in the Lu2O3 starting material. Up to 950 °C, the samples were single phase, with structure changing smoothly with Lu content from fluorite type (F) to bixbyite type (C). For the samples heated at 1100 °C phase separation into coexisting F- and C-type structures was observed for 0.35<x<0.7. It was also found that addition of Lu strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C.  相似文献   

19.
A highly sensitive and stable tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor was developed based on carbon nanotube (CNT) dispersed in mesoporous composite films of sol-gel titania and perfluorosulfonated ionomer (Nafion). Single-wall (SWCNT) and multi-wall carbon nanotubes (MWCNT) can be easily dispersed in the titania-Nafion composite solution. The hydrophobic CNT in the titania-Nafion composite films coated on a glassy carbon electrode certainly increased the amount of Ru(bpy)32+ immobilized in the ECL sensor by adsorption of Ru(bpy)32+ onto CNT surface, the electrocatalytic activity towards the oxidation of hydrophobic analytes, and the electronic conductivity of the composite films. Therefore, the present ECL sensor based on the CNT-titania-Nafion showed improved ECL sensitivity for tripropylamine (TPA) compared to the ECL sensors based on both titania-Nafion composite films without CNT and pure Nafion films. The present Ru(bpy)32+ ECL sensor based on the MWCNT-titania--Nafion composite gave a linear response (R2 = 0.999) for TPA concentration from 50 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 10 nM while the ECL sensors based on titania-Nafion composite without MWCNT, pure Nafion films, and MWCNT-Nafion composite gave a detection limit of 0.1 μM, 1 μM, and 50 nM, respectively. The present ECL sensor showed outstanding long-term stability (no signal loss for 4 months).  相似文献   

20.
A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH2-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH2-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH2-IL and negatively charged catalase a sensitive H2O2 biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (ks) and Michaelis–Menten constant (KM) of immobilized catalase were 3.32 × 10−12 mol cm−2, 5.28 s−1 and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 μA mM−1 cm−2 and low detection limit of 100 nM at concentration range up to 2.1 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号