首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel method based on the paired ion electrospray ionization (PIESI) mass spectrometry has been developed for determination of acidic pesticides at ultratrace levels in surface and ground waters. The proposed approach provides greatly enhanced sensitivity for acidic pesticides and overcomes the drawbacks of the less sensitive negative ion mode ESI-MS. The limits of detection (LODs) of 19 acidic pesticides were evaluated with four types of dicationic ion-pairing reagent (IPR) in both single ion monitoring (SIM) and selected reaction monitoring (SRM) mode. The LOD of 19 pesticides obtained with the use the optimal dicationic ion-pairing reagent ranged from 0.6 pg to 19 pg, indicating the superior sensitivity provided by this method. The transition pathways for different pesticide-IPR complexes during the collision induced dissociation (CID) were identified. To evaluate and eliminate any matrix effects and further decrease the detection limits, off-line solid-phase extraction (SPE) was performed for DI water and a river water matrix spiked with 2000 ng L−1 and 20 ng L−1 pesticides standards respectively, which showed an average percent recovery of 93%. The chromatographic separation of the acidic pesticides was conducted by high-performance liquid chromatography (HPLC) using a C18 column (250 mm × 2.1 mm) in the reversed phase mode using linear gradient elution. The optimized HPLC–PIESI-MS/MS method was utilized for determination of acidic pesticide at ng L−1 level in stream/pond water samples. This experimental approach is 1–3 orders of magnitude more sensitive for these analytes than other reported methods performed in the negative ion mode.  相似文献   

2.
Pesticides residues in aquatic ecosystems are an environmental concern which requires efficient analytical methods. In this study, we proposed a generic method for the quantification of 13 pesticides (azoxystrobin, clomazone, diflufenican, dimethachlor, carbendazim, iprodion, isoproturon, mesosulfuron-methyl, metazachlor, napropamid, quizalofop and thifensulfuron-methyl) in three environmental matrices. Pesticides from water were extracted using a solid phase extraction system and a single solid-liquid extraction method was optimized for sediment and fish muscle, followed by a unique analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Limits of quantification were below 5 ng L−1 for water (except for fluroxypyr and iprodion) and ranged between 0.1 ng g−1 and 57.7 ng g−1 for sediments and regarding fish, were below 1 ng g−1 for 8 molecules and were determined between 5 and 49 ng g−1 for the 5 other compounds. This method was finally used as a new routine practice for environmental research.  相似文献   

3.
A multi residue analysis was developed for screening, quantification and confirmation of 36 priority organic compounds included in the 2000/60/EC European Water Framework Directive. The compounds analyzed included 19 pesticides, 8 PAH, 5 endocrine-disruptors and 4 organochlorine compounds. The method was developed in three steps. First, automated off-line solid-phase extraction using Strata X cartridges was optimized to trap simultaneously the 36 studied compounds. Second, the more volatile compounds were analysed by gas chromatography coupled to mass spectrometry with electron impact ionisation in selected ion monitoring mode (SIM). Third, the last 20 compounds were detected and quantified, in one run, by liquid chromatography coupled to fluorescence detector and tandem mass spectrometry. The excellent selectivity and sensitivity allowed us satisfactory quantification and confirmation at levels as low as 0.2-67 ng L−1 with recoveries between 59 and 105%. Such methodology was then applied to French surface waters: all the waters present organic contaminants, and their concentration varied according to the origin and nature of substances.  相似文献   

4.
The paper presents a new HPLC method, with UV and MSn detection, for the determination of seven pesticides, including the sulfonylurea herbicides amidosulfuron, azimsulfuron, nicosulfuron, rimsulfuron, thifensulfuron methyl, tribenuron methyl, and the fungicide azoxystrobin characterised by a methoxyacrilate structure. The methodology consists of a preconcentration/SPE (solid phase extraction) step and HPLC-UV (240 nm detection wavelength)-MSn analysis. Under the optimised conditions and after a 1000/1 preconcentration factor, the limits of detection were lower than 14.5 ng L−1 for UV detection and lower than 8.1 ng L−1 for MS detection. The limits of quantification were lower than 48.3 ng L−1 in UV detection and than 26.9 ng L−1 in MSn detection. The analysis of two samples, spiked with a mixture of the pesticides at threshold level concentrations, gave more than 60% recovery.  相似文献   

5.
A sensitive and specific method was developed and validated for the determination of estrogen and xenoestrogen in surface waters using liquid chromatography followed by tandem mass spectrometry. Chromatographic separation was performed using ammonium hydroxide solutions in water and in methanol as mobile phase. Compounds were determined in a triple quadrupole mass spectrometer equipped with an electrospray ionization interface operating in the negative mode. Multiple reaction monitoring conditions were optimized for estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, bisphenol A, 4-n-octylphenol, and 4-n-nonylphenol. The method was linear from 0.1 ng L− 1 to 10 µgL− 1. Limits of quantification varied between 0.1 and 3.1 ng L− 1 and recoveries for a 50 ng L− 1 spiked-surface water solution varied between 72 and 140%. The method was successfully used to determine estrogen and xenoestrogen levels in Brazilian water samples collected along the Atibaia River Basin, in the State of São Paulo. Concentrations of estrogens varied from 2.2 to 39 ng L− 1. Bisphenol A was the most frequently detected compound as well as the only xenoestrogen in the samples with concentrations between 25 and 84 ng L− 1.  相似文献   

6.
A solid-phase microextraction (SPME) method has been developed for the determination of 3 chloroacetanilide herbicides in both fresh and seawater samples. The extracted sample was analyzed by gas chromatography with mass spectrometry detection (GC-MS), and parameters affecting SPME operation including fibre type, sample pH, sample temperature, mixing speed and extraction time have been evaluated and optimized. The amount of dissolved organic matter (DOM) and the salt content both affected SPME extraction efficiency, but the presence of other competitive extractants such as organochlorine pesticides (OCPs) in the matrix showed no insignificance interference. The limit of detection (LOD) for acetochlor, metolachlor and butachlor were 1.2, 1.6 and 2.7 ng L−1, respectively. The recoveries for the herbicides ranged from 79 to 102%, and the linear dynamic range was from 10 to 1000 ng L−1. The developed method has been used to monitor herbicides contaminations in coastal water samples collected around Laizhou bay and Jiaozhou bay in Shandong peninsula, China. The concentrations of acetochlor and metolachlor ranged from undetectable to 78.5 ng L−1 and undetectable to 35.6 ng L−1, respectively. Butachlor was not observed but in only one sample and the concentration is lower than the limit of quantification (LOQ). The concentrations of the three herbicides in this study are low compared to most of the other places reported.  相似文献   

7.
The distribution of pyrethroid and phenylpyrazole pesticides in the water environment has raised public concerns because of their potential risks to ecosystem and human health. However, co-extraction of emulsifier type compounds (by liquid–liquid extraction, LLE) present in environmental samples can present a challenge for quantifying typically low concentrations of pesticides. Several methods were evaluated for breaking emulsions in problematic environmental surface water samples extracted by LLE using methylene chloride. Target pesticides included 11 typical pyrethroid and phenylpyrazole pesticides commonly used in agricultural and landscape insect pest control. The most effective method was selected for validation in fortification studies with GC-ECD analysis. The average recoveries of spiked pyrethroid and phenylpyrazole pesticides were 88.2–123.4% for water samples with moderate emulsions and 93.0–117.4% for water samples with severe emulsions. Recoveries of the pesticides ranged 81.0–126.4% (water samples with moderate emulsions) and 95.9–110.6% (water samples with severe emulsions) for lowest fortification level (5–20 ng L−1), 88.2–123.4% (water samples with moderate emulsions) and 93.0–117.4% (water samples with severe emulsions) for middle fortification level (10–40 ng L−1), and 90.2–119.9% (water samples with moderate emulsions) and 91.2–105.9% (water samples with severe emulsions) for highest fortification level (50–200 ng L−1). Relative standard deviations of pesticide recoveries were usually <10%. Results indicate that this method is a robust and reproducible option for LLE of pyrethroid and phenylpyrazole pesticides from emulsion-prone surface water samples.  相似文献   

8.
Liquid chromatography (LC)/tandem mass spectrometry (MS/MS) after supramolecular solvent-based microextraction (SUSME) was firstly used in this work for the enantioselective determination of chiral pesticides in natural waters. The method developed for the quantitation of the R- and S-enantiomers of mecoprop (MCPP) and dichlorprop (DCPP) involved the extraction of the herbicides in a supramolecular solvent (SUPRAS) made up of reverse aggregates of dodecanoic acid (DoA), analyte re-extraction in acetate buffer (pH = 5.0), separation of the target enantiomers on a chiral column of permethylated α-cyclodextrin under isocratic conditions, and detection of the daughter ions (m/z = 140.9 and 160.6 for MCPP and DCPP, respectively) using a hybrid triple quadrupole mass spectrometer equipped with an electrospray source operating in the negative ion mode. Similar recoveries (ca. 75%) and actual concentration factors (ca. 94) were obtained for both phenoxypropanoic acids (PPAs). The quantitation limits were 1 ng L−1 for R- and S-MCPP, and 4 ng L−1 for R- and S-DCPP, and the precision, expressed as relative standard deviation (n = 6) was in the ranges 2.4–2.7% ([R-MCPP] = [S-MCPP] = 5 ng L−1 and [R-DCPP] = [S-DCPP] = 15 ng L−1) and 1.6–1.8% (100 ng L−1 of each enantiomer). The SUSME-LC–MS/MS method was successfully applied to the determination of the enantiomers of MCPP and DCPP in river and underground waters, fortified at concentrations between 15 and 180 ng L−1 at variable enantiomeric ratios (ER = 1–9).  相似文献   

9.
Solid-phase extraction (SPE) was combined with headspace solid-phase microextraction (HS-SPME) for the highly effective enrichment of 17 ultra trace organochlorine pesticides in water samples. The target compounds were successfully transferred from water samples to a gas chromatography capillary column by means of four consecutive steps, namely SPE, solvent conversion, HS-SPME, and thermal desorption of the SPME fiber. Parameters, including elution volume and breakthrough volume in the SPE step, temperature in the solvent conversion step, and fiber type, ionic strength, extraction temperature, extraction time, and pH in the SPME step were optimized to improve the performance of the method through either single factor comparative experiment or the orthogonal experimental design approach. After optimization, the method gave high sensitivity with a method detection limit ranging from 0.0018 to 0.027 ng L−1, good repeatability with a relative standard deviation less than 20% (n = 4) and acceptable recovery with a value mostly exceeding 60%. External standard calibration was employed for the quantification, and a wide linear range (from 0.0010 to 60 ng mL−1) with R2 values ranging from 0.9988 to 0.9999 were observed. In the end, the method was successfully applied to the Arctic samples, and the results showed that, among all the organochlorine pesticides, hexachlorocyclohexanes (HCHs) were the most predominant in the Arctic surface water body with sum of their concentrations ranging from 0.262 to 3.156 ng L−1.  相似文献   

10.
A liquid chromatography-mass spectrometry (LC-MS) method for the identification and quantification of chlormequat (CQ) and mepiquat (MQ) in source waters with high sensitivity and specificity was established using WCX cartridges (150 mg/6 mL) for pre-concentration of the samples and using the CAPCELL PAK CR 1:4 (2.0 mm × 150 mm 5 μm, SCX:C18 = 1:4) column containing strong cationic exchange resins and C18 for separation. The method could solve the problem for pre-concentrating ionic compounds from water samples and avoid the MS instrument fouling problem accompanied with the use of ion-pair reagents. After the optimization of analytical conditions, quantification was achieved in the positive electrospray ionization mode using selected ion monitoring. The samples were analyzed with multi-channel mode with quantification performed at 30 V cone voltage to ascertain the sensitivity and qualitative analysis performed at 60 V cone voltage simultaneously. The method detection limits (MDLs) of CQ and MQ in source water were determined to be 14 and 22 ng L−1. Finally, the method was used to quantify CQ and MQ in several source waters, which gave a level ranging from below the quantitation limit to 28 ng L−1.  相似文献   

11.
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L−1 Se and 101 ng L−1 Se, respectively, corresponding to about 3 ng g−1 and 10 ng g−1, respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 ± 0.4 ng g−1 and 1726 ± 55 ng g−1, and that in soil samples varied between 113 ± 6.5 ng g−1 and 1692 ± 21 ng g−1.  相似文献   

12.
In this work, a rapid and sensitive analytical multiresidue method has been developed for the simultaneous determination of 48 pesticides and 19 metabolites in waters (tap, leaching and sewage), using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with triple quadrupole in selected reaction monitoring (SRM) mode. The procedure involves initial single phase extraction of samples with acetonitrile by sonication, followed by liquid-liquid partition aided by “salting out” process using NaCl. Matrix influence on recoveries was evaluated for the three waters. More than 50% of the compound presented very low signal suppression. The method presents good linearity over the range assayed 10-500 μg L−1 and the most frequent detection limits was 0.05 ng mL−1. The average recovery by the LC-MS/MS method obtained for these compounds varied from 74.6 to 111.2% with a relative standard deviation between 2.5 and 8.9%. The proposed method was used to determine pesticides levels in leaching water samples from 5 lysimeters from an experimental greenhouse located in Murcia.  相似文献   

13.
A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the detection of pesticides in tap and treated wastewater was developed and validated according to the ISO/IEC 17025:1999. Key features of this method include direct injection of 100 μL of sample, an 11 min separation by means of a rapid resolution liquid chromatography system with a 4.6 mm × 50 mm, 1.8 μm particle size reverse phase column and detection by electrospray ionization (ESI) MS-MS. The limits of detection were below 15 ng L−1 and correlation coefficients for the calibration curves in the range of 30-2000 ng L−1 were higher than 0.99. Precision was always below 20% and accuracy was confirmed by external evaluation. The main advantages of this method are direct injection of sample without preparative procedures and low limits of detection that fulfill the requirements established by the current European regulations governing pesticide detection.  相似文献   

14.
A quantitative immunochemical rapid test for sensitive determination of benzo[a]pyrene (BAP) as a model analyte was developed making use of a handheld reader for results evaluation. The covalent immobilization of antibodies to different Sepharose gels, i.e., CNBr-activated Sepharose 4B and CNBr-activated Sepharose 4 Fast Flow was compared with adsorption to a polyethylene support. The lowest limits of detection (LOD) were 4 ng L−1 and 40 ng L−1, respectively, using optimized assay conditions. The developed test was applied to food supplements (garlic, black radish and maca), including a pretreatment procedure. LOD of 9 ng kg−1 and linear range of 13-80 ng kg−1 were obtained. Results of BAP determination in naturally contaminated samples were confirmed by high-performance liquid chromatography coupled to fluorescence detection and a good correlation was achieved. We suggest that the developed test format can be used to quantitative detection of the low molecular weight analytes, such as mycotoxins, pesticides, other pollutants in food and environmental samples.  相似文献   

15.
Methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are oxygenated compounds added to gasoline to enhance octane rating and to improve combustion. They may be found as pollutants of living and working environments. In this work a robotized method for the quantification of low level MTBE, ETBE and TAME in human urine was developed and validated. The analytes were sampled in the headspace of urine by SPME in the presence of MTBE-d12 as internal standard. Different fibers were compared for their linearity and extraction efficiency: carboxen/polydimethylsiloxane, polydimethylsiloxane/divinylbenzene, and polydimethylsiloxane. The first, although highly efficient, was discarded due to deviation of linearity for competitive displacement, and the polydimethylsiloxane/divinylbenzene fiber was chosen instead. The analysis was performed by GC/MS operating in the electron impact mode. The method is very specific, with range of linearity 30-4600 ng L−1, within- and between-run precision, as coefficient of variation, <22 and <16%, accuracy within 20% the theoretical level, and limit of detection of 6 ng L−1 for all the analytes. The influence of the matrix on the quantification of these ethers was evaluated analysing the specimens of seven traffic policemen exposed to autovehicular emissions: using the calibration curve and the method of standard additions comparable levels of MTBE (68-528 ng L−1), ETBE (<6 ng L−1), and TAME (<6 ng L−1) were obtained.  相似文献   

16.
In this work multifunctional sorbents, based on surfactant-coated mineral oxides, are assessed for the simultaneous extraction/preconcentration of pesticide multiresidues from aqueous environmental samples. Seventeen pesticides, representative of all the common groups (triazines, phenylureas, carbamates, azols, anilides, chloroacetanilides, organophosphorous, phenoxyacids, aryloxy acids and phenols), are selected for this study. The sorbents assessed are pure sodium dodecyl sulphate (SDS) and mixed tetrabutylammonium (TBA)-SDS hemimicelles and/or admicelles adsorbed onto alumina. Because of their multifunctional character, these sorbents provide different retention mechanisms (i.e. hydrophobic, ionic and/or π-cation interactions), which highly contribute to the efficient retention of pesticides with different polarities and acidities (bases, neutrals and acids). In addition, the low volume of eluent required for complete elution of analytes (typically 1-2 mL) avoided the need of using time-consuming and tedious evaporation steps that generally are needed when cross-linked polymeric resins or carbon materials are used as sorbents. The performance of two sorbents, i.e. SDS and TBA-SDS mixed hemimicelles/admicelles, for the admicellar solid-phase extraction (ASPE) of pesticide multiresidue was comparatively investigated. The latter was selected on the basis of the higher breakthrough volumes permitted, the lower volume of eluent required and the higher sample and eluent flow rates allowed. The proposed ASPE/LC/UV approach provided detection limits lower than 100 ng L−1 for the determination of the 17 pesticides tested. Recoveries from spiked (at the ng L−1 level) river and underground water samples was quantitative for most of the pesticides tested.  相似文献   

17.
Sensitive and reliable methods have been developed and validated for determination of commonly consumed azole antifungal pharmaceuticals (clotrimazole, econazole, ketoconazole, and miconazole) and biocides (propiconazole and tebuconazole) in various waters and sewage sludge. Solid phase extraction (SPE) combined with ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) was used to determine the azole antifungals in waters. Azole antifungals in sewage sludge were extracted with ultrasonic-assisted extraction, followed by SPE cleanup and UHPLC–MS/MS detection. Quantification was performed by internal standard calibration in multiple reaction monitoring mode. Recoveries were mostly in the range of 52–110% with relative standard deviations generally within 20%. Method quantification limits were 0.5–6 ng L−1 in waters and 3–9 ng g−1 dry weight (dw) in sewage sludge, respectively. The methods were applied to determine the azole antifungals in wastewater, river water, sediment, and sewage sludge sampled from the Pearl River Delta, China. Clotrimazole, ketoconazole, and miconazole were widely detected at low ng L−1 in waters, low ng g−1 dw in river sediment, and low μg g−1 dw in sewage sludge. The methods can provide valuable tools for investigating occurrence and fate of the azole antifungals in the environment.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants in both living and working environments. The aim of this study was the development of a headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry (HS-SPME/GC-IDMS) method for the simultaneous quantification of 13 PAHs in urine samples. Different parameters affecting PAHs extraction by HS-SPME were considered and optimized: type/thickness of fiber coatings, extraction temperature/time, desorption temperature/time, ionic strength and sample agitation. The stability of spiked PAHs solutions and of real urine samples stored up to 90 days in containers of different materials was evaluated. In the optimized method, analytes were absorbed for 60 min at 80 °C in the sample headspace with a 100 μm polydimethylsiloxane fiber. The method is very specific, with linear range from the limit of quantification to 8.67 × 103 ng L−1, a within-run precision of <20% and a between-run precision of <20% for 2-, 3- and 4-ring compounds and of <30% for 5-ring compounds, trueness within 20% of the spiked concentration, and limit of quantification in the 2.28-2.28 × 101 ng L−1 range. An application of the proposed method using 15 urine samples from subjects exposed to PAHs at different environmental levels is shown.  相似文献   

19.
An improved analytical method for determination of human pharmaceuticals in natural and wastewaters with ng L−1 sensitivity is presented. The method is applicable to pharmaceuticals from a wide range of therapeutic classes including antibiotics, analgesics, anti-inflammatories and anti-cancer compounds. Pharmaceuticals were extracted from waters using solid-phase extraction, and after concentration, analysed by high performance liquid chromatography with tandem mass spectrometric detection (HPLC-MS/MS). Identification of each compound was secured using retention time and by the selected reaction monitoring of two transitions, one of which was additionally used for quantification. Limits of detection ranged from 0.03 to 0.96 ng L−1 and were up to two orders of magnitude lower than those of previously published methods. The method was validated using spiked samples prepared from tap, river and sea water as well as wastewater effluents, collected from the North of Scotland. Analysis of wastewater effluents revealed the presence of mefenamic acid, ibuprofen, erythromycin, diclofenac and trimethoprim. None of the selected pharmaceuticals were detected in river, tap or sea water samples.  相似文献   

20.
A new procedure was described with multiwalled carbon nanotubes as solid phase extraction packing material for the trace analysis of nicosulfuron, thifensulfuron and metsulfuron-methyl in water samples. The possible parameters influencing the enrichment were optimized and the optimal conditions were as followed: eluent, sample pH, flow rate and sample volume were acetonitrile containing 1% acetic acid, pH 3, 8 mL min−1 and 500 mL, respectively. Under the optimal chromatographic separation and SPE conditions, the linear range, detection limit (S/N = 3) and precision (R.S.D., n = 6) were 0.04-40 ng mL−1, 6.8 ng L−1 and 2.5% for nicosulfuron, 0.04-40 ng mL−1, 11.2 ng L−1 and 5.4% for thifensulfuron, 0.02-20 ng mL−1, 5.9 ng L−1, 2.1% for metsulfuron-methyl, respectively. The established method was well employed to determine nicosulfuron, thifensulfuron and metsulfuron-methyl in tap water, seawater, reservoir water and well water samples, and satisfactory results were obtained, the spiked recoveries in the range of 87.2-100.7%, 96.5-105.6% and 83.7-111.1% for them each, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号