首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method is based on spectrophotometric determination of Fe(II) and Fe(III) at a single wavelength (530 nm) with the use of a dedicated reversed-flow injection system. In the system, EDTA solution is injected into a carrier stream (HNO3) and then merged with a sample stream containing a mixture of sulfosalicylic acid and 1,10-phenanthroline as indicators. In an acid environment (pH ≅ 3) the indicators form complexes with both Fe(III) and Fe(II), but EDTA replaces sulfosalicylic acid, forming a more stable colourless complex with Fe(III), whereas Fe(II) remains in a complex with 1,10-phenenthroline. As a result, the area and minimum of the characteristic peak can be exploited as measures corresponding to the Fe(III) and Fe(II) concentrations, respectively. The analytes were not found to affect each other's signals, hence two analytical curves were constructed with the use of a set of standard solutions, each containing Fe(II) and Fe(III). Both analytes were determined in synthetic samples within the concentration ranges of 0.05–4.0 and 0.09–6.0 mg L−1, respectively, with precision less than 1.5 and 2.6% (RSD) and with accuracy less than 4.3 and 5.6% (RE). The method was applied to determination of the analytes in water samples collected from artesian wells and the results of the determination were consistent with those obtained using the ICP-OES technique.  相似文献   

2.
A selective novel reverse flow injection system with chemiluminescence detection (rFI-CL) for the determination of Cr(VI) in presence of Cr(III) with Dichlorotris (1,10-phenanthroline)ruthenium(II), (Ru(phen)3Cl2), is described in this work. This new method is based on the oxidation capacity of Cr(VI) in H2SO4 media. First, the Ruthenium(II) complex is oxidized to Ruthenium(III) complex by Cr(VI) and afterwards it is reduced to the excited state of the Ruthenium(II) complex by a sodium oxalate solution, emitting light inside the detector. The intensity of chemiluminescence (CL) is proportional to the concentration of Cr(VI) and, under optimum conditions, it can be determined over the range of 3-300 μg L−1 with a detection limit of 0.9 μg L−1. The RSD was 8.4% and 1.5% at 5 and 50 μg L−1, respectively. For the rFI-CL method various analytical parameters were optimized: flow rate (1 mL min−1), H2SO4 carrier concentration (20% w/V), Ru(phen)3Cl2 concentration (5 mM) and sodium oxalate concentration (0.1 M). The effect of Cr(III), Fe(III), Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Ca(II) and Mg(II), was studied. The method is highly sensitive and selective, allowing a fast, on-line determination of Cr(VI) in the presence of Cr(III). Finally, the method was tested in four different water samples (tap, reservoir, well and mineral), with good recovery percentage.  相似文献   

3.
The system Fe(II)-5-Aphen-H2O was studied. The spectroscopic and electrochemical results show that only one stable complex between Fe(II) and 5-Aphen forms, having a 1:3 stoichiometric ratio. The spectrophotometry study allowed determination of the formation constant of the complex (log β3 = 23.42 ± 0.06). Also, the stability of the complex was evaluated as a function of pH; it was found that it decomposed at low pH values depending on the concentration and a pseudo-first order kinetics constant associated with k′ = 0.011 min−1. The results are in agreement with the electrochemical behaviour observed in the system, which indicated that at pH 1.33 the destruction of the complex [Fe(5-Aphen)3]2+ took place as a function of time; however, when the experiments were carried out at pH 6.19 the complex was stable. The thermodynamic data obtained through the use of MEDUSA allowed construction of predominance zone diagrams of the system Fe(II)-5-Aphen-H2O under the experimental conditions used. The thermodynamic results represented in the PZD describe the experimental behaviour reported in this work.  相似文献   

4.
Hexacyanoferrate(III) was used as a mediator in the determination of total iron, as iron(II)-1,10-phenanthroline, at a screen-printed carbon sensor device. Pre-reduction of iron(III) at −0.2 V versus Ag/AgCl (1 M KCl) in the presence of hexacyanoferrate(II) and 1,10-phenanthroline (pH 3.5-4.5), to iron(II)-1,10-phenanthroline, was complete at the unmodified carbon electrode surface. Total iron was then determined voltammetrically by oxidation of the iron(II)-1,10-phenanthroline at +0.82 V, with a detection limit of 10 μg l−1.In potable waters, iron is present in hydrolysed form, and it was found necessary to change the pH to 2.5-2.7 in order to reduce the iron(III) within 30 s. A voltammetric response was not found at lower pH values owing to the non-formation of the iron(II)-1,10-phenanthroline complex below pH 2.5.Attempts to incorporate all the relevant reagents (1,10-phenanthroline, potassium hexacyanoferrate(III), potassium hydrogen sulphate, sodium acetate, and potassium chloride) into a modifying coated PVA film were partially successful. The coated electrode behaved very satisfactorily with freshly-prepared iron(II) and iron(III) solutions but with hydrolysed iron, the iron(III) signal was only 85% that of iron(II).  相似文献   

5.
The H-point standard addition method (HPSAM) was applied to kinetic data for simultaneous determination of Fe(III) and Fe(II) or selective determination of Fe(III) in the presence of Fe(II). The method is based on the difference in the rate of two processes; reduction of Fe(III) with Co(II) and subsequent complex formation of resulted Fe(II) with 1,10-phenanthroline, and direct complex formation between Fe(II) and 1,10-phenanthroline in pH 3 and cetyl trimethyl ammonium bromide, CTAB, micellar media. Fe(III) can be determined in the range of 0.75-5.13 mug ml(-1)with satisfactory accuracy and precision in the presence of excess Fe(II) under working conditions. The proposed method was successfully applied to the simultaneous determination of Fe(III) and Fe(II) and also to the selective determination of Fe(III) in the presence of Fe(II) in several synthetic mixtures containing different concentration ratios of Fe(III) to Fe(II).  相似文献   

6.
The speciation of iron in seawater is receiving much attention worldwide, and several methods have been developed to measure its various chemical species. Although probably the most important in algal iron accumulation, Fe(II) is very unstable in seawater, is rapidly oxidised to Fe(III), thus the time between collection of the samples and the actual Fe(II) assessment may have significant impact on the obtained results. Especially for kinetic analysis, where radiotracer methods ask for off-line counting, waiting times should be taken into account.The present paper presents a model to account for waiting time in off-line Fe(II) assessment. The model comprises Fe(II) oxidation in a reducing environment (∼1 × 10−5 M Na2SO3 in filtered seawater) and binding to column-associated ferrozine, for use with ferrozine preloaded SepPak® C18 cartridges. The model is essentially based on mathematical treatment of transport in micro-vessels and uses known rate factors for the oxidation and reduction of Fe. In off-line chromatographic Fe(II) assessment, the model was shown to account for variances in Fe(II) recoveries ranging from 10 to 54%, and for waiting times ranging from 2 to 80 min. The presented data shows that waiting time resulted in underestimation up to a factor 10 as measured by direct recovery counting of loaded Fe(II). As excess amounts of ferrozine were used for these experiments, this underestimation will be mainly caused by the oxidation of ferrous iron during this waiting time. The data also suggests that time-modelling may account for all effects, thus permitting off-line counting of Fe(II) without loss of data quality.  相似文献   

7.
The semiempirical zero-differential-overlap molecular orbital model which was shown in earlier papers in this series to give a good account of the charge transfer and -* spectra of Fe(II) complexes with conjugated ligands such as 2,2-bipyridyl and 1,10-phenanthroline is extended to complexes having openshell ground states, such as those of Fe(III), and to complexes of Ru(II) and Ru(III). The results are used to assign the observed charge transfer and intra-ligand absorption bands to specific orbital transitions. Observed and calculated intensities are in good agreement: reasons are advanced for the much lower intensity of the charge transfer bands in Ru(III) compared to Ru(II) complexes.  相似文献   

8.
A method for speciation, preconcentration and separation of Fe(II) and Fe(III) in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. 4-Acetyl-5-methyl-1-phenyl-1H-pyrazole-3-carboxylic acid (AMPC) was used as a new complexing reagent for Fe(III). The Fe(III)-AMPC complex was extracted into methyl isobutyl ketone (MIBK) phase in the pH range 1.0-2.5, and Fe(II) ion remained in aqueous phase at all pH. The chemical composition of the Fe(III)-AMPC complex was determined by the Job's method. The optimum conditions for quantitative recovery of Fe(III) were determined as pH 1.5, shaking time of 2 min, 1.64 × 10−4 mol L−1 AMPC reagent and 10 mL of MIBK. Furthermore, the influences of diverse metal ions were investigated. The level of Fe(II) was calculated by difference of total iron and Fe(III) concentrations. The detection limit based on the 3σ criterion was found to be 0.24 μg L−1 for Fe(III). The recoveries were higher than 95% and relative standard deviation was less than 2.1% (N = 8). The validation of the procedure was performed by the analysis of two certified standard reference materials. The presented method was applied to the determination of Fe(II) and Fe(III) in tap water, lake water, river water, sea water, fruit juice, cola, and molasses samples with satisfactory results.  相似文献   

9.
The proposed method for ascorbic acid: AA (Vitamin C) determination is based on the oxidation of AA to dehydroascorbic acid with the CUPRAC reagent of total antioxidant capacity assay, i.e., Cu(II)-neocuproine (Nc), in ammonium acetate-containing medium at pH 7, where the absorbance of the formed bis(Nc)-copper(I) chelate is measured at 450 nm. The flavonoids (essentially flavones and flavonols) normally interfering with the CUPRAC procedure were separated with preliminary extraction as their La(III) chelates into ethylacetate (EtAc). The Cu(I)-Nc chelate responsible for color development was formed immediately with AA oxidation. Beer's law was obeyed between 8.0 × 10−6 and 8.0 × 10−5 M concentration range, with the equation of the linear calibration curve: A450 nm = 1.60 × 104C (mol dm−3) − 0.0596. The relative standard deviation (R.S.D.) in the analysis of N = 45 synthetic mixtures containing 1.25 × 10−2 mM AA with flavonoids was 5.3%. The Cu(II)-Nc reagent is a lower redox-potential and therefore more selective oxidant than the Fe(III)-1,10-phenanthroline reagent conventionally used for the same assay. This feature makes the proposed method superior for real samples such as fruit juices containing weak reductants such as citrate, oxalate and tartarate that may otherwise produce positive errors in the Fe(III)-phen method when equilibrium is achieved. The developed method was applied to some commercial fruit juices and pharmaceutical preparations containing Vitamin C + bioflavonoids. The findings of the developed method for fruit juices and pharmaceuticals were statistically alike with those of HPLC. The proposed spectrophotometric method was practical, low-cost, rapid, and could reliably assay AA in the presence of flavonoids without enzymatic procedures open to interferences by enzyme inhibitors.  相似文献   

10.
Species arising from Fe(II) hydrolysis in aqueous solution have been investigated using density-functional methods (DFT). The different tautomers and multiplicities of each species have been calculated. The solvation energy has been estimated using the UAHF–PCM method. The hydrolysis free energies have been estimated and compared with the available experimental data. The different hydrolysis species have distinct geometries and electronic structures. The estimated ionization potential of the hydrolyzed species is linearly dependent to the number of hydroxyls present in the complex. The estimated Fe(II)/Fe(III) oxidation potential is in good agreement with previously published results about 0.29 V larger than the experimental value. The results highlight the importance of the chemical speciation in describing electron transfer processes at a molecular level. The PBE/TZVP/UAHF–PCM method has been found to describe correctly the hydrolysis free energies of Fe(II) with an average error about 5 kcal mol−1 from the experimental values.  相似文献   

11.
A polymer inclusion membrane (PIM) is reported consisting of 45% (m/m) di(2-ethylhexyl)phosphoric acid (D2EHPA) immobilized in poly(vinyl chloride) (PVC) for use as a solid phase absorbent for selectively extracting Zn(II) from aqueous solutions in the presence of Cd(II), Co(II), Cu(II), Ni(II) and Fe(II). Interference from Fe(III) in the sample is eliminated by precipitation with orthophosphate prior to the extraction of Zn(II). Studies using a dual compartment transport cell have shown that the Zn(II) flux (2.58 × 10−6 mol m−2 s−1) is comparable to that observed for supported liquid membranes. The stoichiometry of the extracted complex is shown to be ZnR2·HR, where R is the D2EHPA anion.  相似文献   

12.
The simple potentiometric method proposed for the indirect determination of 1–10 mg of gold(III) is based on reduction to the metal with excess of cobalt(II) in the presence of 1,10-phenanthroline or 2,2'-bipyridine at pH 3 and 50°C, and titration of the unused cobalt(II) complex with iron(III) chloride solution. Many metal ions can be tolerated; Ag(I) and Pd(II) are eliminated by precipitation with sodium chloride and 1,10-phenanthroline or 2,2'-bipyridine, respectively, but Hg(II), Fe(III) and Pt(IV) interfere. The method is applied to the determination of gold in alloys.  相似文献   

13.
The H-point standard addition method (HPSAM) for simultaneous determination of Fe(II) and Fe(III) is described. The method is based on the difference in the rate of complex formation of iron in two different oxidation states with Gallic acid (GA) at pH 5. Fe(II) and Fe(III) can be determined in the range of 0.02–4.50 μg ml−1 and 0.05–5.00 μg ml−1, respectively, with satisfactory accuracy and precision in the presence of other metal ions, which rapidly form complexes with GA under working conditions. The proposed method was successfully applied for simultaneous determination of Fe(II) and Fe(III) in several environmental and synthetic samples with different concentration ratios of Fe(II) and Fe(III).  相似文献   

14.
A new pyridine-2,6-dicarboxylate iron(III)/iron(II) complex [Fe(phen)3][Fe2(PDC)4]·3CH3OH was synthesized and characterized (where PDC = pyridine-2,6-dicarboxylate, phen = 1,10-phenanthroline) by using elemental analysis, IR spectroscopy and thermal analyses (TGA and DTA). The molecular structure of the complex has been determined by single-crystal X-ray diffraction. The complex is mixed-ligands and the IR spectra display bands characteristic of coordinated mixed-ligand bases. All the IR results are in agreement with the X-ray crystal result. The bond lengths indicate that this complex has [Fe(phen)3]2+ cation where Fe(II) ion is in typical low-spin state, and in counter ions, [Fe(PDC)2] are both in high-spin state.  相似文献   

15.
The redox reaction between cobalt(II) and gold(III) chloride in the presence of 1.10-phenanthroline or 2,2'-bipyridine was studied, and a titration of the cobalt(II) complex with a gold(III) chloride solution was developed. A 4-fold amount of 1,10-phenanthroline or 2,2'-bipyridine was necessary for rapid quantitative reaction; the permissible pH range was 1.5–5. The oxidation of the cobalt(II) complex proceeds rapidly at 40–50°C, and a direct potentiometric titration was possible. The following maximum errors were obtained: 3.3% for 0.2–1.0 mg Co, 2.0% for 1–5 mg Co, and 0.70% for 10–40 mg Co. The following ions did not interfere: Ni(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(II), Cr(III), Al(III), Th(IV), Se(IV), Ti(IV), U(VI), Mo(VI), SO2-4 and PO3-4. Even small quantities of silver(I), copper(II), palladium(II), mercury(II)and iron(III) interfered. The method was applied to the determination of high cobalt contents in high-temperature nickel-base alloys.  相似文献   

16.
The novel water-soluble polymer–cobalt(III) complex samples, cis-[Co(phen)2(BPEI)Cl]Cl2 · 4H2O (phen = 1,10-phenanthroline, BPEI = branched polyethyleneimine), with different amounts of cobalt complex content in the polymer chain, were prepared by ligand substitution method in water–ethanol medium and characterized by Infra-red, UV–Vis, 1H NMR spectral and elemental analysis methods. The interaction of these polymer–cobalt(III)-phenanthroline complex samples with calf thymus DNA has been explored using electronic absorption spectroscopy, emission spectroscopy and gel electrophoresis techniques. The presence of multiple small size molecular binding sites, namely, the cobalt(III)–phenanthroline complex moieties, and free amino groups in a single big sized polymer molecule enhanced both the electrostatic and/or van der Waals interaction and partial intercalative bindings with calf thymus DNA. The antitumor activity of a sample of polymer–cobalt(III) complex was determined using HEp-2 cell line and different cell death indicator stains and MTT assay. Many of the cultured HEp-2 cells treated with this complex suffered loss of viability and death mostly through apoptosis as evidenced by the nuclear and cytoplasmic morphology.  相似文献   

17.
A metallophthalocyanine complex with zirconium(IV) ion in the center (as an oxo-zirconium, Zr=O, group) was used in poly vinyl chloride (PVC) membranes for the selective detection of 5-sulfosalicylic acid (SSA). The resulting electrodes demonstrate Nernstian responses over a wide range of sulfosalicylic acid concentration (10−6 to 10−1 mol dm−3) with a slope of about −29 mV per decade. The influence of lipophilic ion-exchanger sites on the response properties of the electrodes was investigated. The optimal potentiometric response was observed for the electrode in the presence of about 150 mol% of cationic additive (relative to ionophore) in the phase membrane. The electrodes have a fast response time, micromolar detection limit and good long-term stability (more than 2 months). The feasibility of the application of these sensors for the potentiometric titration of iron in solutions that were prepared from magnetite samples was investigated.  相似文献   

18.
Mashhadizadeh MH  Shoaei IS  Monadi N 《Talanta》2004,64(4):1048-1052
A new PVC membrane potentiometric sensor that is highly selective to Fe(III) ions was prepared by using 2-[(2-hydroxy-1-propenyl-buta-1,3-dienylimino)-methyl]-4-p-tolylazo-phenol [HPDTP] as a suitable carrier. The electrode exhibits a linear response for iron(III) ions over a wide concentration range (3.5 × 10−6 to 4.0 × 10−2) with a super Nernstian slope of 28.5 (±0.5) per decade. The electrode can be used in the pH range from 4.5 to 6.5. The proposed sensor shows fairly a good discriminating ability towards Fe3+ ion in comparison to some hard and soft metals such as Fe2+, Cd2+, Cu2+, Al3+ and Ca2+. It has a response time of <15 s and can be used for at least 2 months without any measurable divergence in response characteristics. The electrode was used in the direct determination of Fe3+ in aqueous samples and as an indicator electrode in potentiometric titration of Fe(III) ions.  相似文献   

19.
A method has been developed for the separation of Fe(II)-1,10-phenanthroline and Fe(III)-5-sulphosalicylate complexes on a reversed-phase C18 column in the presence of an ion-pairing reagent. Samples were injected on the column in the pre-complexed form and separated using a mobile phase consisting of acetonitrile [0.1% (w/v) in 5-sulphosalicylic acid] ?0.02 M sodium acetate buffer (pH 6.9) [0.1% (w/v) in tetramethylammonium chloride] (1 + 1). Spectrophotometric detection of the complexes was carried out at 515 nm. Linear calibration graphs were obtained for 1–12 μg mol?1 Fe(II) and Fe(III).  相似文献   

20.
A method for simultaneous analysis of V(IV) and Co(II) has been developed by using artificial neural network (ANN). This method is based on the difference of the chemical reaction rate of V(IV) and Co(II) with Fe(III) in the presence of chromogenic reagent, 1,10-phenanthroline. The reduced product of the reaction, Fe(II), can form a colored complex with 1,10-phenanthroline and make a visible spectrophotometric signal for indirect monitoring of the V(IV) and Co(II) concentrations. Feed forward neural networks have been trained to quantify considered metal ions in mixtures under optimum conditions. The networks were shown to be capable of correlating reduced spectral kinetic data using principal component analysis (PCA) of mixtures with individual metal ion. In this way an ANN containing three layers of nodes was trained. Sigmoidal and linear transfer functions were used in the hidden and output layers, respectively, to facilitate nonlinear calibration. Both V(IV) and Co(II) were analyzed in the concentration range of 0.1-4.0 μg ml−1. The proposed method was also applied satisfactorily to the determination of considered metal ions in several synthetic and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号